File size: 16,691 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import json
import pandas as pd
from inference import generate_outputs
from typing import List, Dict
from table_bench_eval.utils import read_json_file
from table_bench_eval.qa_metric import QAMetric
from table_bench_eval.utils import (
parse_chart_code_then_exec,
parse_code_then_exec,
pre_save_table_to_csv,
parse_final_answer_prediction,
extract_final_answer,
write_json_to_file,
execution_eval,
parse_python_code
)
"""
Evaluation process modified from https://github.com/TableBench/TableBench
"""
def format_inputs(samples: List[Dict]) -> List:
"""
输入数据格式化函数,按照 generate 的格式要求改造 inputs
:param samples: 待格式化样例数据
:param mode: 格式化模式
"""
# 把需要推理的数据拼成 message 形式
msgs = []
for sample in samples:
msg_sys = sample["instruction"]
msg = [
{"role": "user", "content": msg_sys},
]
msgs.append(msg)
return msgs
def model_infer_and_save(
test_path,
llm_model,
tokenizer,
generate_args,
inference_output_dir,
base_model_name,
n_samples_test=None, # for test mode, default None
):
fnames = [x for x in os.listdir(test_path) if x.endswith('.jsonl')]
all_samples = []
for file_name in fnames:
print(file_name)
file_path = os.path.join(test_path, file_name)
samples = read_json_file(file_path)
if n_samples_test:
samples = samples[:n_samples_test]
msgs = format_inputs(samples)
resp = generate_outputs(msgs, llm_model, tokenizer, generate_args)
assert len(resp) == len(samples)
for i, output in enumerate(resp):
samples[i]["raw_generation"] = output["output_text"]
save_path = os.path.join(inference_output_dir, base_model_name.split('/')[-1]+'_infer_'+file_name.split('.')[0]+'.jsonl')
with open(save_path, 'w') as f:
for item in samples:
f.write(json.dumps(item)+'\n')
all_samples.extend(samples)
return all_samples
def execute_samples_and_save(all_samples, output_dir, base_model_name):
DP_samples, TCOT_samples, SCoT_samples, Pot_samples = [], [], [], []
for sample in all_samples:
instruct_type = sample["instruction_type"]
table = sample["table"]
table = json.loads(table)
pre_save_table_to_csv(table)
prediction = sample["raw_generation"]
answer = sample["answer"]
qtype = sample['qtype']
if "Final Answer" in prediction and parse_python_code(prediction) == "":
parsed_prediction = parse_final_answer_prediction(prediction)
parsed_result = {'parsed_prediction': parsed_prediction}
elif "Final Answer" not in prediction and parse_python_code(prediction) == "":
parsed_result = {'parsed_prediction': prediction, "Parse@1": False, "ecr_1":False}
else:
if qtype == "Visualization":
parsed_prediction, ecr_1 = parse_chart_code_then_exec(sample)
else:
parsed_prediction, ecr_1 = parse_code_then_exec(prediction)
parsed_result = {
'parsed_prediction': parsed_prediction, 'ecr_1': ecr_1
}
# save parsed results
if execution_eval(parsed_prediction):
parsed_result['Parse@1'] = True
else:
parsed_result['Parse@1'] = False
sample["parsed_result"] = parsed_result
if instruct_type == "TCoT":
TCOT_samples.append(sample)
elif instruct_type == "SCoT":
SCoT_samples.append(sample)
elif instruct_type == "DP":
DP_samples.append(sample)
else:
Pot_samples.append(sample)
prompt_types = ["TCoT", "SCoT", "DP", "PoT"]
prompt_samples = [TCOT_samples, SCoT_samples, DP_samples, Pot_samples]
save_paths = [os.path.join(output_dir, base_model_name.split('/')[-1]+'_'+"execute_"+st+'.jsonl') for st in prompt_types]
all_samples = []
# save all the execute samples
for save_path, samples in zip(save_paths, prompt_samples):
all_samples.extend(samples)
write_json_to_file(save_path, samples, is_json_line=True)
return all_samples
def build_categoried_llm_inference_results(all_samples, base_model_name):
'''
categoried_llm_inference_results format is:
{
"model_name/prompt_type": { "merged_type": [result1, result2, ...] }
}
'''
categoried_llm_inference_results = {}
for result in all_samples:
model_name = base_model_name
type = result['qtype']
subtype = result['qsubtype']
merged_type = f'{type}_{subtype}'
prompt_type = result['instruction_type']
key = f'{model_name}/{prompt_type}'
if key not in categoried_llm_inference_results:
categoried_llm_inference_results[key] = {}
if merged_type not in categoried_llm_inference_results[key]:
categoried_llm_inference_results[key][merged_type] = []
categoried_llm_inference_results[key][merged_type].append(result)
return categoried_llm_inference_results
def eval_by_subtype(categoried_llm_inference_results, qa_metric, eval_result_dir, metric_name='ROUGE-L'):
llm_eval_subtype_results = {}
llm_eval_subtype_results_path = f'{eval_result_dir}/llm_eval_subtype_results.json'
llm_eval_subtype_results_csv_path = f'{eval_result_dir}/llm_eval_subtype_results.csv'
for key, result in categoried_llm_inference_results.items():
print(f'Processing {key}...')
for merge_type, results in result.items():
if merge_type == 'Visualization_ChartGeneration':
metric_scores = {
'F1': 0,
'EM': 0,
'ROUGE-L': 0,
'SacreBLEU': 0,
}
total = len(results)
metric_scores['total'] = total
ecr_1_acc = None
ecr_1s = [result["parsed_result"].get('ecr_1', None)
for result in results]
ecr_1_acc = ecr_1s.count(True) / total
metric_scores['ECR@1'] = round(ecr_1_acc*100, 2)
pass_1_acc = None
parsed_prediction_results = []
for result in results:
parsed_prediction = result["parsed_result"]['parsed_prediction']
if parsed_prediction == 'True':
parsed_prediction_results.append(True)
elif parsed_prediction == 'False':
parsed_prediction_results.append(False)
else:
parsed_prediction_results.append('None')
pass_1_acc = parsed_prediction_results.count(True) / total
metric_scores['Pass@1'] = round(pass_1_acc*100, 2)
else:
predictions = [result["parsed_result"]
['parsed_prediction'] for result in results]
references = [result['answer'] for result in results]
metric_scores = qa_metric.compute(predictions, references)
total = len(predictions)
metric_scores['total'] = total
if key.split('/')[1] == 'PoT':
ecr_1_acc = None
ecr_1s = [result["parsed_result"].get('ecr_1', None)
for result in results]
ecr_1_acc = ecr_1s.count(True) / total
metric_scores['ECR@1'] = round(ecr_1_acc*100, 2)
parse_1s = [result["parsed_result"].get(
'Parse@1', None) for result in results]
metric_scores['Parse@1'] = round(
parse_1s.count(True) / total * 100, 2)
if key not in llm_eval_subtype_results:
llm_eval_subtype_results[key] = {}
llm_eval_subtype_results[key][merge_type] = metric_scores
write_json_to_file(llm_eval_subtype_results_path, llm_eval_subtype_results)
llm_eval_subtype_csv_results = []
for key, result in llm_eval_subtype_results.items():
csv_result = {
'model_name': key.split('/')[0],
'prompt_type': key.split('/')[1]
}
for merge_type, metric_scores in result.items():
if merge_type == 'Visualization_ChartGeneration':
csv_result[merge_type] = metric_scores['Pass@1']
else:
csv_result[merge_type] = metric_scores[metric_name]
llm_eval_subtype_csv_results.append(csv_result)
llm_eval_df = pd.DataFrame(llm_eval_subtype_csv_results)
llm_eval_df.to_csv(llm_eval_subtype_results_csv_path,
index=False, sep='\t')
def eval_by_type(categoried_llm_inference_results, qa_metric, eval_result_dir, metric_name='ROUGE-L'):
llm_eval_type_results_path = f'{eval_result_dir}/llm_eval_type_results.json'
llm_eval_type_results_csv_path = f'{eval_result_dir}/llm_eval_type_results.csv'
llm_eval_type_results = {}
for key, result in categoried_llm_inference_results.items():
type_dict = {}
print(f'Processing {key}...')
for merge_type, results in result.items():
type = merge_type.split('_')[0]
if type not in type_dict:
type_dict[type] = []
type_dict[type].extend(results)
for type, results in type_dict.items():
if type == 'Visualization':
metric_scores = {
'F1': 0,
'EM': 0,
'ROUGE-L': 0,
'SacreBLEU': 0,
}
total = len(results)
metric_scores['total'] = total
ecr_1_acc = None
ecr_1s = [result["parsed_result"].get('ecr_1', None)
for result in results]
ecr_1_acc = ecr_1s.count(True) / total
metric_scores['ECR@1'] = round(ecr_1_acc*100, 2)
pass_1_acc = None
parsed_prediction_results = []
for result in results:
parsed_prediction = result["parsed_result"]['parsed_prediction']
if parsed_prediction == 'True':
parsed_prediction_results.append(True)
elif parsed_prediction == 'False':
parsed_prediction_results.append(False)
else:
parsed_prediction_results.append('None')
pass_1_acc = parsed_prediction_results.count(True) / total
metric_scores['Pass@1'] = round(pass_1_acc*100, 2)
else:
predictions = [result["parsed_result"]['parsed_prediction']
for result in results]
references = [result['answer'] for result in results]
metric_scores = qa_metric.compute(predictions, references)
total = len(predictions)
metric_scores['total'] = total
if key.split('/')[1] == 'PoT':
ecr_1_acc = None
ecr_1s = [result["parsed_result"].get('ecr_1', None)
for result in results]
ecr_1_acc = ecr_1s.count(True) / total
metric_scores['ECR@1'] = round(ecr_1_acc*100, 2)
parse_1s = [result["parsed_result"].get(
'Parse@1', None) for result in results]
metric_scores['Parse@1'] = round(
parse_1s.count(True) / total * 100, 2)
if key not in llm_eval_type_results:
llm_eval_type_results[key] = {}
llm_eval_type_results[key][type] = metric_scores
write_json_to_file(llm_eval_type_results_path, llm_eval_type_results)
llm_eval_type_csv_results = []
for key, result in llm_eval_type_results.items():
csv_result = {
'model_name': key.split('/')[0],
'prompt_type': key.split('/')[1]
}
for type, metric_scores in result.items():
if type == 'Visualization':
csv_result[type] = metric_scores['Pass@1']
else:
csv_result[type] = metric_scores[metric_name]
llm_eval_type_csv_results.append(csv_result)
llm_eval_df = pd.DataFrame(llm_eval_type_csv_results)
llm_eval_df.to_csv(llm_eval_type_results_csv_path, index=False, sep='\t')
def eval_by_overall(categoried_llm_inference_results, qa_metric, eval_result_dir, metric_name='ROUGE-L'):
llm_eval_overall_results_path = f'{eval_result_dir}/llm_eval_overall_results.json'
llm_eval_overall_results_csv_path = f'{eval_result_dir}/llm_eval_overall_results.csv'
llm_eval_overall_results = {}
for key, result in categoried_llm_inference_results.items():
print(f'Processing {key}...')
overall_results = []
overall_wov_results = []
overall_wv_results = []
for merge_type, results in result.items():
if merge_type == 'Visualization_ChartGeneration':
overall_wv_results.extend(results)
else:
overall_wov_results.extend(results)
overall_results.extend(results)
metric_scores = {}
total = len(overall_results)
metric_scores['total'] = total
wov_total = len(overall_wov_results)
predictions = [result["parsed_result"]['parsed_prediction']
for result in overall_wov_results]
references = [result['answer'] for result in overall_wov_results]
wv_metric_scores = qa_metric.compute(predictions, references)
rouge_l = wv_metric_scores['ROUGE-L']
wv_total = len(overall_wv_results)
parsed_predictions = [result["parsed_result"]['parsed_prediction']
for result in overall_wv_results]
parsed_prediction_results = []
for parsed_prediction in parsed_predictions:
if parsed_prediction == 'True':
parsed_prediction_results.append(True)
elif parsed_prediction == 'False':
parsed_prediction_results.append(False)
else:
parsed_prediction_results.append('None')
if wv_total == 0:
pass_1_acc = 0
else:
pass_1_acc = parsed_prediction_results.count(True) / wv_total * 100
mix_metric = (rouge_l*wov_total + pass_1_acc*wv_total) / total
metric_scores['MIX_Metric'] = round(mix_metric, 2)
if key.split('/')[1] == 'PoT':
ecr_1_acc = None
ecr_1s = [result["parsed_result"].get('ecr_1', None)
for result in overall_results]
ecr_1_acc = ecr_1s.count(True) / total
metric_scores['ECR@1'] = round(ecr_1_acc*100, 2)
parse_1s = [result["parsed_result"].get(
'Parse@1', None) for result in overall_results]
metric_scores['Parse@1'] = round(
parse_1s.count(True) / total * 100, 2)
llm_eval_overall_results[key] = metric_scores
write_json_to_file(llm_eval_overall_results_path, llm_eval_overall_results)
llm_eval_overall_csv_results = []
for key, metric_scores in llm_eval_overall_results.items():
csv_result = {
'model_name': key.split('/')[0],
'prompt_type': key.split('/')[1]
}
csv_result['overall'] = metric_scores['MIX_Metric']
csv_result['Parse@1'] = metric_scores['Parse@1']
llm_eval_overall_csv_results.append(csv_result)
llm_eval_df = pd.DataFrame(llm_eval_overall_csv_results)
llm_eval_df.to_csv(llm_eval_overall_results_csv_path,
index=False, sep='\t')
def run_eval(all_samples, output_dir, base_model_name):
eval_result_dir = os.path.join(output_dir, "eval_results")
if not os.path.exists(eval_result_dir):
os.mkdir(eval_result_dir)
metric_name = 'ROUGE-L'
qa_metric = QAMetric()
categoried_llm_inference_results = build_categoried_llm_inference_results(all_samples, base_model_name)
print('-'*10, 'Eval by subtype', '-'*10)
eval_by_subtype(categoried_llm_inference_results, qa_metric, eval_result_dir, metric_name)
print('-'*10, 'Eval by type', '-'*10)
eval_by_type(categoried_llm_inference_results, qa_metric, eval_result_dir, metric_name)
print('-'*10, 'Eval by overall', '-'*10)
eval_by_overall(categoried_llm_inference_results, qa_metric, eval_result_dir, metric_name)
|