File size: 10,524 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import re
from table_instruct.eval.scripts.table_utils import evaluate as table_llama_eval
from table_instruct.eval.scripts.metric import *
from rouge_score import rouge_scorer
import numpy as np
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import sacrebleu
from nltk.translate import meteor_score
import time

def extract_bracket_content(text):
    # 使用正则表达式提取由 <> 包裹的内容
    pattern = r'<(.*?)>'
    matches = re.findall(pattern, text)
    
    # 如果没有匹配内容,则返回原始字符串
    return matches[0] if matches else text

def split_string(text):
    # 使用换行符和逗号进行分割
    return [item.strip() for item in re.split(r'[\n,]+', text) if item.strip()]

def eval_hitab_ex(data):
    pred_list = []
    gold_list = []
    for i in range(len(data)):
        if len(data[i]["predict"].strip("</s>").split(">, <")) > 1:
            instance_pred_list = data[i]["predict"].strip("</s>").split(">, <")
            pred_list.append(instance_pred_list)
            gold_list.append(data[i]["output"].strip("</s>").split(">, <"))
        else:
            pred_list.append(data[i]["predict"].strip("</s>"))
            gold_list.append(data[i]["output"].strip("</s>"))
    result=table_llama_eval(gold_list, pred_list)
    return result

def compute_rouge(list1, list2):
    scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
    scores = []
    for sent1, sent2 in zip(list1, list2):
        score = scorer.score(sent1, sent2)
        scores.append(score)
    rouge1 = np.mean([score['rouge1'].fmeasure for score in scores])
    rouge2 = np.mean([score['rouge2'].fmeasure for score in scores])
    rougeL = np.mean([score['rougeL'].fmeasure for score in scores])
    return {'rouge1': rouge1, 'rouge2': rouge2, 'rougeL': rougeL}

def compute_bleu(list1, list2):
    bleu_scores = []
    smoothie = SmoothingFunction().method4  # 用于平滑处理BLEU分数
    for ref, pred in zip(list1, list2):
        reference = [ref.split()]  # BLEU 接受参考文本列表
        candidate = pred.split()
        score = sentence_bleu(reference, candidate, smoothing_function=smoothie)
        bleu_scores.append(score)
    bleu_score = np.mean(bleu_scores)
    return bleu_score


def compute_sacrebleu(reference_list, candidate_list):
    individual_scores = []

    for ref, pred in zip(reference_list, candidate_list):
        # 计算每对句子的 BLEU 分数
        score = sacrebleu.sentence_bleu(pred, [ref])  # 参考文本需要是列表形式
        individual_scores.append(score.score)

    # 计算平均分
    average_bleu = sum(individual_scores) / len(individual_scores)
    return average_bleu


def compute_meteor(reference_list, candidate_list):
    individual_scores = []

    for ref, pred in zip(reference_list, candidate_list):
        ref_tokens = ref.split()  # 参考句子分词
        pred_tokens = pred.split()  # 预测句子分词

        # 直接传入已分词的列表
        score = meteor_score.single_meteor_score(ref_tokens, pred_tokens)
        individual_scores.append(score)

    # 计算平均分
    average_meteor = sum(individual_scores) / len(individual_scores)
    return average_meteor


def eval_bleu(data):
    test_examples_answer = [x["output"] for x in data]
    test_predictions_pred = [x["predict"].strip("</s>") for x in data]
    predictions = test_predictions_pred
    references = test_examples_answer

    #rouge = evaluate.load('rouge')
    #result_rouge = rouge.compute(predictions=predictions, references=references)
    result_rouge = compute_rouge(references,predictions)
    result_bleu = compute_bleu(references,predictions)
    result_sacrebleu = compute_sacrebleu(references,predictions)
    # result_meteor = compute_meteor(references,predictions)

    result = {
        'rouge':result_rouge,
        'bleu':result_bleu,
        'sacrebleu':result_sacrebleu,
    }
    return result

def eval_ent_link_acc(data):
    #assert len(data) == 2000
    correct_count = 0
    multi_candidates_example_count = 0
    for i in range(len(data)):
        candidate_list = data[i]["candidates_entity_desc_list"]
        ground_truth = data[i]["output"].strip("<>").lower()
        predict = data[i]["predict"].strip("<>").lower()

        if ground_truth.lower() in predict.lower():
            correct_count += 1
        if len(candidate_list) > 1:
            multi_candidates_example_count += 1

    acc=correct_count / len(data)
    result={
        "correct_count":correct_count,
        "acc":acc
    }
    return result

def eval_col_pop_map(data):
    rs = []
    recall = []
    for i in range(len(data)):
        ground_truth = data[i]["target"].strip(".")
        # ground_truth = data[i]["target"].strip(".")
        pred = data[i]["predict"].strip(".")
        if "</s>" in pred:
            end_tok_ix = pred.rfind("</s>")
            pred = pred[:end_tok_ix]
        ground_truth_list = ground_truth.split(", ")

        pred_list = split_string(pred)
        pred_list = [extract_bracket_content(p) for p in pred_list]
        for k in range(len(pred_list)):
            pred_list[k] = pred_list[k].strip("<>")

        new_pred_list = list(set(pred_list))
        new_pred_list.sort(key=pred_list.index)
        r = [1 if z in ground_truth_list else 0 for z in new_pred_list]
        ap = average_precision(r)
        # print("ap:", ap)
        rs.append(r)

        recall.append(sum(r) / len(ground_truth_list))
    map = mean_average_precision(rs)
    m_recall = sum(recall) / len(data)
    if map + m_recall == 0:
        f1=0
    else:
        f1 = 2 * map * m_recall / (map + m_recall)

    result={
        "mean_average_precision":map,
        "mean_average_recall":m_recall,
        "f1":f1
    }
    return result

def eval_col_type_f1(data):
    #rel_ex也用这一套
    ground_truth_list = []
    pred_list = []
    for i in range(len(data)):
        item = data[i]
        ground_truth = item["ground_truth"]
        # pred = item["predict"].strip("</s>").split(",")
        pred = item["predict"].split("</s>")[0].split(", ")
        ground_truth_list.append(ground_truth)
        pred_list.append(pred)

    total_ground_truth_col_types = 0
    total_pred_col_types = 0
    joint_items_list = []
    for i in range(len(ground_truth_list)):
        total_ground_truth_col_types += len(ground_truth_list[i])
        total_pred_col_types += len(pred_list[i])
        # joint_items = [item for item in pred_list[i] if item in ground_truth_list[i]]
        joint_items = []
        for g in ground_truth_list[i]:
            for p in pred_list[i]:
                if g.lower() in p.lower():
                    joint_items_list.append(p)
        joint_items_list += joint_items

    # import pdb
    # pdb.set_trace()

    gt_entire_col_type = {}
    for i in range(len(ground_truth_list)):
        gt = list(set(ground_truth_list[i]))
        for k in range(len(gt)):
            if gt[k] not in gt_entire_col_type.keys():
                gt_entire_col_type[gt[k]] = 1
            else:
                gt_entire_col_type[gt[k]] += 1
    # print(len(gt_entire_col_type.keys()))

    pd_entire_col_type = {}
    for i in range(len(pred_list)):
        pd = list(set(pred_list[i]))
        for k in range(len(pd)):
            if pd[k] not in pd_entire_col_type.keys():
                pd_entire_col_type[pd[k]] = 1
            else:
                pd_entire_col_type[pd[k]] += 1
    # print(len(pd_entire_col_type.keys()))

    joint_entire_col_type = {}
    for i in range(len(joint_items_list)):
        if joint_items_list[i] not in joint_entire_col_type.keys():
            joint_entire_col_type[joint_items_list[i]] = 1
        else:
            joint_entire_col_type[joint_items_list[i]] += 1
    # print(len(joint_entire_col_type.keys()))

    precision = len(joint_items_list) / total_pred_col_types
    recall = len(joint_items_list) / total_ground_truth_col_types
    if precision + recall==0:
        f1=0
    else:
        f1 = 2 * precision * recall / (precision + recall)

    sorted_gt = sorted(gt_entire_col_type.items(), key=lambda x: x[1], reverse=True)

    result = {
        "precision": precision,
        "recall": recall,
        "f1": f1
    }
    return result

def eval_tabfact_acc(data):
    correct = 0
    remove_count = 0
    for i in range(len(data)):
        ground_truth = data[i]["output"]
        prediction = data[i]["predict"]
        # if prediction.find(ground_truth) == 0:
        if ground_truth.lower() in prediction.lower():
            correct += 1
        if prediction.find("<s>") == 0:
            remove_count += 1

    acc=correct / (len(data) - remove_count)
    result={
        "correct":correct,
        "accuracy":acc
    }
    return result

def eval_row_pop_map(data):
    rs = []
    recall = []
    ap_list = []
    for i in range(len(data)):
        pred = data[i]["predict"].strip(".")
        if "</s>" in pred:
            end_tok_ix = pred.rfind("</s>")
            pred = pred[:end_tok_ix]
        ground_truth_list = data[i]["target"]
        pred_list_tmp = split_string(pred)
        try:
            pred_list = [extract_bracket_content(p) for p in pred_list_tmp]
        except:
            print(pred_list_tmp)
        for k in range(len(pred_list)):
            pred_list[k] = pred_list[k].strip("<>")

        # add to remove repeated generated item
        new_pred_list = list(set(pred_list))
        new_pred_list.sort(key=pred_list.index)
        # r = [1 if z in ground_truth_list else 0 for z in pred_list]
        r = [1 if z in ground_truth_list else 0 for z in new_pred_list]
        # ap = average_precision(r)
        ap = row_pop_average_precision(r, ground_truth_list)
        # print("ap:", ap)
        ap_list.append(ap)

    map = sum(ap_list) / len(data)
    m_recall = sum(recall) / len(data)
    if map + m_recall == 0:
        f1 = 0
    else:
        f1 = 2 * map * m_recall / (map + m_recall)
    # print(data_name, len(data))
    # print("mean_average_precision:", map)
    result = {
        "mean_average_precision": map,
        "mean_average_recall": m_recall,
        "f1": f1
    }
    return result