File size: 10,524 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import re
from table_instruct.eval.scripts.table_utils import evaluate as table_llama_eval
from table_instruct.eval.scripts.metric import *
from rouge_score import rouge_scorer
import numpy as np
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import sacrebleu
from nltk.translate import meteor_score
import time
def extract_bracket_content(text):
# 使用正则表达式提取由 <> 包裹的内容
pattern = r'<(.*?)>'
matches = re.findall(pattern, text)
# 如果没有匹配内容,则返回原始字符串
return matches[0] if matches else text
def split_string(text):
# 使用换行符和逗号进行分割
return [item.strip() for item in re.split(r'[\n,]+', text) if item.strip()]
def eval_hitab_ex(data):
pred_list = []
gold_list = []
for i in range(len(data)):
if len(data[i]["predict"].strip("</s>").split(">, <")) > 1:
instance_pred_list = data[i]["predict"].strip("</s>").split(">, <")
pred_list.append(instance_pred_list)
gold_list.append(data[i]["output"].strip("</s>").split(">, <"))
else:
pred_list.append(data[i]["predict"].strip("</s>"))
gold_list.append(data[i]["output"].strip("</s>"))
result=table_llama_eval(gold_list, pred_list)
return result
def compute_rouge(list1, list2):
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
scores = []
for sent1, sent2 in zip(list1, list2):
score = scorer.score(sent1, sent2)
scores.append(score)
rouge1 = np.mean([score['rouge1'].fmeasure for score in scores])
rouge2 = np.mean([score['rouge2'].fmeasure for score in scores])
rougeL = np.mean([score['rougeL'].fmeasure for score in scores])
return {'rouge1': rouge1, 'rouge2': rouge2, 'rougeL': rougeL}
def compute_bleu(list1, list2):
bleu_scores = []
smoothie = SmoothingFunction().method4 # 用于平滑处理BLEU分数
for ref, pred in zip(list1, list2):
reference = [ref.split()] # BLEU 接受参考文本列表
candidate = pred.split()
score = sentence_bleu(reference, candidate, smoothing_function=smoothie)
bleu_scores.append(score)
bleu_score = np.mean(bleu_scores)
return bleu_score
def compute_sacrebleu(reference_list, candidate_list):
individual_scores = []
for ref, pred in zip(reference_list, candidate_list):
# 计算每对句子的 BLEU 分数
score = sacrebleu.sentence_bleu(pred, [ref]) # 参考文本需要是列表形式
individual_scores.append(score.score)
# 计算平均分
average_bleu = sum(individual_scores) / len(individual_scores)
return average_bleu
def compute_meteor(reference_list, candidate_list):
individual_scores = []
for ref, pred in zip(reference_list, candidate_list):
ref_tokens = ref.split() # 参考句子分词
pred_tokens = pred.split() # 预测句子分词
# 直接传入已分词的列表
score = meteor_score.single_meteor_score(ref_tokens, pred_tokens)
individual_scores.append(score)
# 计算平均分
average_meteor = sum(individual_scores) / len(individual_scores)
return average_meteor
def eval_bleu(data):
test_examples_answer = [x["output"] for x in data]
test_predictions_pred = [x["predict"].strip("</s>") for x in data]
predictions = test_predictions_pred
references = test_examples_answer
#rouge = evaluate.load('rouge')
#result_rouge = rouge.compute(predictions=predictions, references=references)
result_rouge = compute_rouge(references,predictions)
result_bleu = compute_bleu(references,predictions)
result_sacrebleu = compute_sacrebleu(references,predictions)
# result_meteor = compute_meteor(references,predictions)
result = {
'rouge':result_rouge,
'bleu':result_bleu,
'sacrebleu':result_sacrebleu,
}
return result
def eval_ent_link_acc(data):
#assert len(data) == 2000
correct_count = 0
multi_candidates_example_count = 0
for i in range(len(data)):
candidate_list = data[i]["candidates_entity_desc_list"]
ground_truth = data[i]["output"].strip("<>").lower()
predict = data[i]["predict"].strip("<>").lower()
if ground_truth.lower() in predict.lower():
correct_count += 1
if len(candidate_list) > 1:
multi_candidates_example_count += 1
acc=correct_count / len(data)
result={
"correct_count":correct_count,
"acc":acc
}
return result
def eval_col_pop_map(data):
rs = []
recall = []
for i in range(len(data)):
ground_truth = data[i]["target"].strip(".")
# ground_truth = data[i]["target"].strip(".")
pred = data[i]["predict"].strip(".")
if "</s>" in pred:
end_tok_ix = pred.rfind("</s>")
pred = pred[:end_tok_ix]
ground_truth_list = ground_truth.split(", ")
pred_list = split_string(pred)
pred_list = [extract_bracket_content(p) for p in pred_list]
for k in range(len(pred_list)):
pred_list[k] = pred_list[k].strip("<>")
new_pred_list = list(set(pred_list))
new_pred_list.sort(key=pred_list.index)
r = [1 if z in ground_truth_list else 0 for z in new_pred_list]
ap = average_precision(r)
# print("ap:", ap)
rs.append(r)
recall.append(sum(r) / len(ground_truth_list))
map = mean_average_precision(rs)
m_recall = sum(recall) / len(data)
if map + m_recall == 0:
f1=0
else:
f1 = 2 * map * m_recall / (map + m_recall)
result={
"mean_average_precision":map,
"mean_average_recall":m_recall,
"f1":f1
}
return result
def eval_col_type_f1(data):
#rel_ex也用这一套
ground_truth_list = []
pred_list = []
for i in range(len(data)):
item = data[i]
ground_truth = item["ground_truth"]
# pred = item["predict"].strip("</s>").split(",")
pred = item["predict"].split("</s>")[0].split(", ")
ground_truth_list.append(ground_truth)
pred_list.append(pred)
total_ground_truth_col_types = 0
total_pred_col_types = 0
joint_items_list = []
for i in range(len(ground_truth_list)):
total_ground_truth_col_types += len(ground_truth_list[i])
total_pred_col_types += len(pred_list[i])
# joint_items = [item for item in pred_list[i] if item in ground_truth_list[i]]
joint_items = []
for g in ground_truth_list[i]:
for p in pred_list[i]:
if g.lower() in p.lower():
joint_items_list.append(p)
joint_items_list += joint_items
# import pdb
# pdb.set_trace()
gt_entire_col_type = {}
for i in range(len(ground_truth_list)):
gt = list(set(ground_truth_list[i]))
for k in range(len(gt)):
if gt[k] not in gt_entire_col_type.keys():
gt_entire_col_type[gt[k]] = 1
else:
gt_entire_col_type[gt[k]] += 1
# print(len(gt_entire_col_type.keys()))
pd_entire_col_type = {}
for i in range(len(pred_list)):
pd = list(set(pred_list[i]))
for k in range(len(pd)):
if pd[k] not in pd_entire_col_type.keys():
pd_entire_col_type[pd[k]] = 1
else:
pd_entire_col_type[pd[k]] += 1
# print(len(pd_entire_col_type.keys()))
joint_entire_col_type = {}
for i in range(len(joint_items_list)):
if joint_items_list[i] not in joint_entire_col_type.keys():
joint_entire_col_type[joint_items_list[i]] = 1
else:
joint_entire_col_type[joint_items_list[i]] += 1
# print(len(joint_entire_col_type.keys()))
precision = len(joint_items_list) / total_pred_col_types
recall = len(joint_items_list) / total_ground_truth_col_types
if precision + recall==0:
f1=0
else:
f1 = 2 * precision * recall / (precision + recall)
sorted_gt = sorted(gt_entire_col_type.items(), key=lambda x: x[1], reverse=True)
result = {
"precision": precision,
"recall": recall,
"f1": f1
}
return result
def eval_tabfact_acc(data):
correct = 0
remove_count = 0
for i in range(len(data)):
ground_truth = data[i]["output"]
prediction = data[i]["predict"]
# if prediction.find(ground_truth) == 0:
if ground_truth.lower() in prediction.lower():
correct += 1
if prediction.find("<s>") == 0:
remove_count += 1
acc=correct / (len(data) - remove_count)
result={
"correct":correct,
"accuracy":acc
}
return result
def eval_row_pop_map(data):
rs = []
recall = []
ap_list = []
for i in range(len(data)):
pred = data[i]["predict"].strip(".")
if "</s>" in pred:
end_tok_ix = pred.rfind("</s>")
pred = pred[:end_tok_ix]
ground_truth_list = data[i]["target"]
pred_list_tmp = split_string(pred)
try:
pred_list = [extract_bracket_content(p) for p in pred_list_tmp]
except:
print(pred_list_tmp)
for k in range(len(pred_list)):
pred_list[k] = pred_list[k].strip("<>")
# add to remove repeated generated item
new_pred_list = list(set(pred_list))
new_pred_list.sort(key=pred_list.index)
# r = [1 if z in ground_truth_list else 0 for z in pred_list]
r = [1 if z in ground_truth_list else 0 for z in new_pred_list]
# ap = average_precision(r)
ap = row_pop_average_precision(r, ground_truth_list)
# print("ap:", ap)
ap_list.append(ap)
map = sum(ap_list) / len(data)
m_recall = sum(recall) / len(data)
if map + m_recall == 0:
f1 = 0
else:
f1 = 2 * map * m_recall / (map + m_recall)
# print(data_name, len(data))
# print("mean_average_precision:", map)
result = {
"mean_average_precision": map,
"mean_average_recall": m_recall,
"f1": f1
}
return result |