File size: 10,845 Bytes
e1f754e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
import torch.nn as nn
import torch.nn.functional as F
## Generate feature maps ----------------------------------------------
EPSILONDIV = 1e-4
WLMID = torch.tensor([462, 655.5, 843, 1599], dtype=torch.float32)
BWIDTH = torch.tensor([48, 81, 142, 70], dtype=torch.float32)
## Spectral features ---------------------------------------------------
def safe_divide(numerator, denominator, eps=EPSILONDIV):
denominator = torch.where(denominator < eps, torch.full_like(denominator, eps), denominator)
return numerator / denominator
def NDVI(image): # image: (C, H, W)
nir = image[2:3]
red = image[1:2]
return safe_divide(nir - red, nir + red)
def BLUENIRndsi(image):
blue = image[0:1]
nir = image[2:3]
return safe_divide(blue - nir, blue + nir)
def BLUESWIRndsi(image):
blue = image[0:1]
swir = image[3:4]
return safe_divide(blue - swir, blue + swir)
def REDSWIRratio(image):
red = image[1:2]
swir = image[3:4]
return safe_divide(red, swir)
def trapz(tensor, x): # tensor: (C, H, W), x: (C,)
x = x.to(tensor.device)
left = tensor[:-1]
right = tensor[1:]
dx = (x[1:] - x[:-1]).view(-1, 1, 1)
return torch.sum(dx * (left + right) / 2.0, dim=0, keepdim=True)
def whiteness(image): # image: (C, H, W)
norm = torch.linalg.norm(image, dim=0, keepdim=True)
norm = torch.where(norm < EPSILONDIV, torch.full_like(norm, EPSILONDIV), norm)
normalized = image / norm
ideal = 1.0 / torch.sqrt(torch.tensor(image.shape[0], dtype=torch.float32, device=image.device))
diff = torch.abs(normalized - ideal)
wrange = WLMID[-1] - WLMID[0]
return trapz(diff, WLMID) / wrange
def brightness(image): # image: (C, H, W)
wrange = WLMID[-1] - WLMID[0]
return trapz(image, WLMID) / wrange
def brightnessVIS(image): # BLUE + RED = channels 0 and 1
return brightness(image[0:2])
def brightnessNIR(image): # NIR + SWIR = channels 2 and 3
return brightness(image[2:4])
def whitenessVIS(image):
return whiteness(image[0:2])
def whitenessNIR(image):
return whiteness(image[2:4])
## Spatial features ---------------------------------------------------
def centered_avg_pool(x: torch.Tensor, size: int) -> torch.Tensor:
"""
x: (B, C, H, W)
size: pooling window size
Returns: same shape (B, C, H, W), average over a centered size×size patch.
"""
# pad H and W by size//2 on both sides, zero pad
pad = size // 2
# F.pad takes (pad_left, pad_right, pad_top, pad_bottom)
x_padded = F.pad(x, (pad, pad, pad, pad), mode="replicate")
# avg_pool2d with kernel=size, stride=1
return F.avg_pool2d(x_padded, kernel_size=size, stride=1)
def mconvolution(original_layer: torch.Tensor,
size: int,
maskconv: torch.Tensor = None) -> torch.Tensor:
"""
Mean convolution: centered average, optionally divided by maskconv.
maskconv: same shape (B, C, H, W) or broadcastable
"""
avg = centered_avg_pool(original_layer, size)
if maskconv is not None:
avg = avg / maskconv
return avg
def sconvolution(original_layer: torch.Tensor,
mean_layer: torch.Tensor,
size: int,
maskconv: torch.Tensor = None,
zeros: torch.Tensor = None) -> torch.Tensor:
"""
Standard-deviation-like convolution:
sqrt( E[x^2] - (E[x])^2 ) where E is centered average.
zeros: tensor of zeros (B, C, H, W) or broadcastable; defaults to zeros_like(original_layer)
"""
# E[x^2]
avg2 = centered_avg_pool(original_layer * original_layer, size)
if maskconv is not None:
avg2 = avg2 / maskconv
# (E[x])^2
mean_sq = mean_layer * mean_layer
# prepare zeros
if zeros is None:
zeros = torch.zeros_like(original_layer)
# sqrt where positive
diff = avg2 - mean_sq
out = torch.sqrt(torch.clamp(diff, min=0.0))
# mask negatives to zero
return torch.where(diff > 0, out, zeros)
def standard_deviation_conv(X, fun=None, size=5, maskconv=None):
# Estimate the pixel wise feature
if fun is not None:
X = fun(X)
# Estimate the mean
mean_layer = mconvolution(X, size, maskconv=maskconv)
# Estimate the standard deviation
std_layer = sconvolution(X, mean_layer, size, maskconv=maskconv)
return std_layer
def mean_conv(X, fun=None, size=5, maskconv=None):
# Estimate the pixel wise feature
if fun is not None:
X = fun(X)
# Estimate the mean
mean_layer = mconvolution(X, size, maskconv=maskconv)
return mean_layer
def covolvemask(maskvalid: torch.Tensor, size: int) -> torch.Tensor:
"""
maskvalid: torch.Tensor of dtype torch.bool or 0/1 ints, shape (H, W)
size: the window size for centered avg pooling
Returns: torch.FloatTensor of shape (H, W)
"""
# 1) to float
mask_f = maskvalid.to(torch.float32).unsqueeze(0).unsqueeze(0)
# 2) centered average pool
mask_cov = centered_avg_pool(mask_f, size)
# 3) where maskvalid==1, keep mask_cov; else set to 1
ones = torch.ones_like(mask_cov)
return torch.where(maskvalid, mask_cov, ones)
def feature_generator(X, maskvalid=None):
# Generate container
dims = (40, X.shape[-2], X.shape[-1])
features = torch.zeros(dims, dtype=torch.float32, device=X.device)
# Identify the bands
TOA_REFL_BLUE = X[0]
TOA_REFL_RED = X[1]
TOA_REFL_NIR = X[2]
TOA_REFL_SWIR = X[3]
# TOA ONLY features
features[0] = TOA_REFL_BLUE
features[30] = TOA_REFL_RED
# Spectral features
features[2] = whitenessVIS(X)
features[3] = REDSWIRratio(X)
features[7] = BLUENIRndsi(X)
features[13] = NDVI(X)
features[24] = BLUESWIRndsi(X)
features[25] = whitenessNIR(X)
features[36] = whiteness(X)
features[37] = brightnessVIS(X)
# Spatial features
## s5
if maskvalid is not None:
mask5 = covolvemask(maskvalid, 5)
mask3 = covolvemask(maskvalid, 3)
else:
mask5 = None
mask3 = None
features[1] = standard_deviation_conv(X, whitenessVIS, 5, mask5)
features[5] = standard_deviation_conv(X, NDVI, 5, mask5)
features[11] = standard_deviation_conv(TOA_REFL_SWIR[None], None, 5, mask5)
features[12] = standard_deviation_conv(X, REDSWIRratio, 5, mask5)
features[15] = standard_deviation_conv(X, whiteness, 5, mask5)
features[17] = standard_deviation_conv(TOA_REFL_BLUE[None], None, 5, mask5)
features[18] = standard_deviation_conv(X, BLUESWIRndsi, 5, mask5)
features[21] = standard_deviation_conv(X, BLUENIRndsi, 5, mask5)
features[27] = standard_deviation_conv(X, whitenessVIS, 5, mask5)
features[29] = standard_deviation_conv(X, brightnessNIR, 5, mask5)
features[32] = standard_deviation_conv(TOA_REFL_RED[None], None, 5, mask5)
features[35] = standard_deviation_conv(X, brightness, 5, mask5)
features[38] = standard_deviation_conv(TOA_REFL_NIR[None], None, 5, mask5)
## s3
features[10] = standard_deviation_conv(X, whitenessNIR, 3, mask3)
features[19] = standard_deviation_conv(X, REDSWIRratio, 3, mask3)
features[20] = standard_deviation_conv(X, NDVI, 3, mask3)
features[23] = standard_deviation_conv(X, whitenessVIS, 3, mask3)
features[26] = standard_deviation_conv(TOA_REFL_BLUE[None], None, 3, mask3)
features[28] = standard_deviation_conv(X, whiteness, 3, mask3)
features[31] = standard_deviation_conv(X, BLUESWIRndsi, 3, mask3)
features[34] = standard_deviation_conv(X, BLUENIRndsi, 3, mask3)
## m5
features[4] = mean_conv(X, NDVI, 5, mask5)
features[6] = mean_conv(X, REDSWIRratio, 5, mask5)
features[9] = mean_conv(X, whitenessVIS, 5, mask5)
features[16] = mean_conv(X, whitenessNIR, 5, mask5)
features[22] = mean_conv(X, BLUENIRndsi, 5, mask5)
## m3
features[8] = mean_conv(X, whitenessVIS, 3, mask3)
features[14] = mean_conv(X, NDVI, 3, mask3)
features[33] = mean_conv(X, BLUENIRndsi, 3, mask3)
features[39] = mean_conv(TOA_REFL_BLUE[None], None, 3, mask3)
return features
def feature_generator_batch(X, maskvalid=None):
"""
X: (B, C, H, W)
maskvalid: (H, W) or None
Returns: (B, 40, H, W)
"""
# Generate container
dims = (X.shape[0], 40, X.shape[-2], X.shape[-1])
features = torch.zeros(dims, dtype=torch.float32, device=X.device)
for i in range(X.shape[0]):
features[i] = feature_generator(X[i], maskvalid=maskvalid)
return features
## Model Torch -------------------------------------------------------
class CloudMaskOne(nn.Module):
def __init__(self,
hidden_layer_sizes=(21, 20),
activation='relu',
last_activation='sigmoid',
dropout_rate=0.0,
input_dim=40,
batch_norm=False):
super().__init__()
self.input_dim = input_dim
# Activation maps
activations = {
'relu': nn.ReLU(inplace=True),
'tanh': nn.Tanh(),
'leaky_relu': nn.LeakyReLU(inplace=True),
}
self.act = activations[activation]
self.last_act = {'sigmoid': nn.Sigmoid(),
'softmax': nn.Softmax(dim=1),
'identity': nn.Identity()}[last_activation]
# normalization conv (no activation)
self.norm_conv = nn.Conv2d(input_dim, 40, 1, bias=not batch_norm)
self.norm_bn = nn.BatchNorm2d(40) if batch_norm else None
# hidden layers: conv with activation, then batch‐norm, then dropout
self.layers = nn.ModuleList()
in_ch = 40
for out_ch in hidden_layer_sizes:
conv = nn.Conv2d(in_ch, out_ch, 1, bias=not batch_norm)
bn = nn.BatchNorm2d(out_ch) if batch_norm else None
do = nn.Dropout(dropout_rate) if dropout_rate>0 else None
self.layers.append(nn.ModuleDict({'conv':conv, 'bn':bn, 'dropout':do}))
in_ch = out_ch
# final conv + sigmoid (no BN or dropout)
self.final_conv = nn.Conv2d(in_ch, 1, 1)
def forward(self, x, maskvalid=None):
# Generate the features
if maskvalid is not None:
x = feature_generator_batch(x, maskvalid)
else:
x = feature_generator_batch(x)
# normalization conv (no activation)
x = self.norm_conv(x)
if self.norm_bn:
x = self.norm_bn(x)
# hidden blocks: conv+act → bn → dropout
for blk in self.layers:
x = self.act(blk['conv'](x))
if blk['bn']:
x = blk['bn'](x)
if blk['dropout']:
x = blk['dropout'](x)
# final conv+sigmoid
x = self.final_conv(x)
return self.last_act(x)
|