File size: 4,947 Bytes
039daa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
import segmentation_models_pytorch as smp


class SegformerBranch(nn.Module):
    def __init__(self, in_channels=4, classes=4):
        super(SegformerBranch, self).__init__()
        self.segformer = smp.Segformer(
            encoder_name="mobilenet_v2",
            encoder_weights=None,
            in_channels=in_channels,
            classes=classes,
        )
    
    def forward(self, x):
        return self.segformer(x)
    
class UNetBranch(nn.Module):
    def __init__(self, in_channels=4, classes=4, benchmark=False):
        super(UNetBranch, self).__init__()
        self.unet = smp.Unet(
            encoder_name="mobilenet_v2",
            encoder_weights=None,
            in_channels=in_channels,
            classes=classes,
        )
        self.benchmark = benchmark
    
    def forward(self, x):
        results = self.unet(x)
        if self.benchmark:
            results = torch.sigmoid(results)
        return results

class UNetPlusPlusBranch(nn.Module):
    def __init__(self, in_channels=4, classes=4, benchmark=False):
        super(UNetPlusPlusBranch, self).__init__()
        self.unet_pp = smp.UnetPlusPlus(
            encoder_name="mobilenet_v2",
            encoder_weights=None,
            in_channels=in_channels,
            classes=classes
        )
        self.benchmark = benchmark

    def forward(self, x):
        results = self.unet_pp(x)
        if self.benchmark:
            results = torch.sigmoid(results)
        return results

class DeepLabV3Branch(nn.Module):
    def __init__(self, in_channels=4, classes=4):
        super(DeepLabV3Branch, self).__init__()
        self.deeplabv3 = smp.DeepLabV3(
            encoder_name="mobilenet_v2",
            encoder_weights=None,
            in_channels=in_channels,
            classes=classes,
        )
    def forward(self, x):
        return self.deeplabv3(x)

class PixelWiseNet(nn.Module):
    def __init__(self, in_channels=4, out_channels=4, base_channels=32):
        super(PixelWiseNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, base_channels, kernel_size=1, bias=False)
        self.bn1   = nn.BatchNorm2d(base_channels)
        self.conv2 = nn.Conv2d(base_channels, base_channels, kernel_size=1, bias=False)
        self.bn2   = nn.BatchNorm2d(base_channels)
        self.conv3 = nn.Conv2d(base_channels, out_channels, kernel_size=1, bias=False)
    
    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.conv3(x)
        return x

class CombinedNet(nn.Module):
    def __init__(self, in_channels=4, classes=4, base_channels=32, benchmark=False):
        super(CombinedNet, self).__init__()
        self.seg_branch = SegformerBranch(in_channels=in_channels, classes=classes)
        self.pixel_branch = PixelWiseNet(in_channels=in_channels, out_channels=classes, base_channels=base_channels)
        self.fusion_conv = nn.Conv2d(classes, classes, kernel_size=1, bias=False)
        self.benchmark = benchmark
    
    def forward(self, x):
        seg_out = self.seg_branch(x)
        pixel_out = self.pixel_branch(x)
        fused = seg_out + pixel_out
        out = self.fusion_conv(fused)
        if self.benchmark:
            out = torch.sigmoid(out)
        return out

class CombinedNet3(nn.Module):
    def __init__(self, in_channels=4, classes=4, base_channels=32, benchmark=False):
        super(CombinedNet3, self).__init__()
        self.seg_branch = UNetPlusPlusBranch(in_channels=in_channels, classes=classes)
        self.pixel_branch = PixelWiseNet(
            in_channels=in_channels,
            out_channels=classes,
            base_channels=base_channels,
        )
        self.fusion_conv = nn.Conv2d(classes, classes, kernel_size=1, bias=False)
        self.benchmark = benchmark
    
    def forward(self, x):
        seg_out = self.seg_branch(x)
        pixel_out = self.pixel_branch(x)
        fused = seg_out + pixel_out
        out = self.fusion_conv(fused)
        if self.benchmark:
            out = torch.sigmoid(out)
        return out
    
class CombinedNet4(nn.Module):
    def __init__(self, in_channels=4, classes=4, base_channels=32, benchmark=False):
        super(CombinedNet4, self).__init__()
        self.seg_branch = DeepLabV3Branch(in_channels=in_channels, classes=classes)
        self.pixel_branch = PixelWiseNet(
            in_channels=in_channels,
            out_channels=classes,
            base_channels=base_channels,
        )
        self.fusion_conv = nn.Conv2d(classes, classes, kernel_size=1, bias=False)
        self.benchmark = benchmark
    
    def forward(self, x):
        seg_out = self.seg_branch(x)
        pixel_out = self.pixel_branch(x)
        fused = seg_out + pixel_out
        out = self.fusion_conv(fused)
        if self.benchmark:
            out= torch.sigmoid(out)
        return out