File size: 3,757 Bytes
93c4d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66ef70
08e31e6
b66ef70
 
 
 
 
 
 
 
 
93c4d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97200bc
 
d364eb6
 
 
 
 
 
 
 
 
93c4d0d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- alignment-handbook
- generated_from_trainer
model-index:
- name: zephyr-7b-align-scan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-align-scan

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on an unknown dataset.
It achieves the following results on the evaluation set:
- Logits/chosen: 0.4326
- Logits/rejected: 0.9106
- Logps/chosen: -136.2882
- Logps/rejected: -189.5506
- Loss: 0.5958
- Rewards/accuracies: 0.3710
- Rewards/chosen: -0.6180
- Rewards/margins: 0.4663
- Rewards/rejected: -1.0842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:------:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.6719        | 0.1047 | 100  | -2.3487       | -2.3310         | -73.2865     | -85.4479       | 0.6687          | 0.3274             | 0.0120         | 0.0552          | -0.0432          |
| 0.6488        | 0.2093 | 200  | -1.2584       | -1.2396         | -102.5743    | -130.3725      | 0.6348          | 0.3373             | -0.2808        | 0.2116          | -0.4924          |
| 0.6331        | 0.3140 | 300  | -1.1873       | -1.0320         | -120.1307    | -157.0977      | 0.6195          | 0.3452             | -0.4564        | 0.3033          | -0.7597          |
| 0.6321        | 0.4186 | 400  | 0.0335        | 0.3728          | -146.9637    | -190.2757      | 0.6099          | 0.3631             | -0.7247        | 0.3667          | -1.0915          |
| 0.6318        | 0.5233 | 500  | 2.6547        | 2.9545          | -155.4930    | -204.6371      | 0.6105          | 0.3552             | -0.8100        | 0.4251          | -1.2351          |
| 0.5978        | 0.6279 | 600  | 0.9606        | 1.4420          | -147.8560    | -199.5121      | 0.6015          | 0.3591             | -0.7336        | 0.4502          | -1.1838          |
| 0.6113        | 0.7326 | 700  | 1.1833        | 1.7188          | -150.6854    | -204.9195      | 0.5986          | 0.3651             | -0.7619        | 0.4760          | -1.2379          |
| 0.5885        | 0.8373 | 800  | 0.5613        | 1.0128          | -141.6925    | -192.4845      | 0.5974          | 0.3690             | -0.6720        | 0.4415          | -1.1136          |
| 0.595         | 0.9419 | 900  | 0.4326        | 0.9106          | -136.2882    | -189.5506      | 0.5958          | 0.3710             | -0.6180        | 0.4663          | -1.0842          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1