update paper
Browse files
README.md
CHANGED
@@ -6,14 +6,11 @@ tags:
|
|
6 |
- token-classification
|
7 |
widget:
|
8 |
- text: >-
|
9 |
-
In
|
10 |
example_title: example 1
|
11 |
- text: >-
|
12 |
-
|
13 |
example_title: example 2
|
14 |
-
- text: >-
|
15 |
-
Windows XP was originally bundled with Internet Explorer 6.
|
16 |
-
example_title: example 3
|
17 |
language:
|
18 |
- en
|
19 |
datasets:
|
@@ -29,13 +26,29 @@ The model uses _self-regularization_ during the finetuning process, allowing it
|
|
29 |
The model recognizes 12 fine-grained named entities: `Algorithm`, `Application`, `Architecture`, `Data_Structure`, `Device`, `Error_Name`, `General_Concept`, `Language`,
|
30 |
`Library`, `License`, `Operating_System`, and `Protocol`.
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
## Model details
|
33 |
|
34 |
-
Paper:
|
35 |
|
36 |
Code: https://github.com/taidnguyen/software_entity_recognition
|
37 |
|
38 |
-
Finetuned from model: `bert-base-cased`
|
|
|
|
|
39 |
|
40 |
## How to use
|
41 |
|
|
|
6 |
- token-classification
|
7 |
widget:
|
8 |
- text: >-
|
9 |
+
In the field of computer graphics, a graphics processing unit (GPU) utilizes algorithms such as ray tracing, a rendering technique, to create realistic lighting effects in applications like Adobe Acrobat and Microsoft Excel.
|
10 |
example_title: example 1
|
11 |
- text: >-
|
12 |
+
By utilizing the TensorFlow and FastAPI libraries with Python, we are optimizing neural network training on devices like the Samsung Gear S2 and Intel T5300 processor.
|
13 |
example_title: example 2
|
|
|
|
|
|
|
14 |
language:
|
15 |
- en
|
16 |
datasets:
|
|
|
26 |
The model recognizes 12 fine-grained named entities: `Algorithm`, `Application`, `Architecture`, `Data_Structure`, `Device`, `Error_Name`, `General_Concept`, `Language`,
|
27 |
`Library`, `License`, `Operating_System`, and `Protocol`.
|
28 |
|
29 |
+
| Type | Examples |
|
30 |
+
|------------------|-------------------------------------------------------|
|
31 |
+
| Algorithm | Auction algorithm, Collaborative filtering |
|
32 |
+
| Application | Adobe Acrobat, Microsoft Excel |
|
33 |
+
| Architecture | Graphics processing unit, Wishbone |
|
34 |
+
| Data_Structure | Array, Hash table, mXOR linked list |
|
35 |
+
| Device | Samsung Gear S2, iPad, Intel T5300 |
|
36 |
+
| Error Name | Buffer overflow, Memory leak |
|
37 |
+
| General_Concept | Memory management, Nouvelle AI |
|
38 |
+
| Language | C++, Java, Python, Rust |
|
39 |
+
| Library | Beautiful Soup, FastAPI |
|
40 |
+
| License | Cryptix General License, MIT License |
|
41 |
+
| Operating_System | Linux, Ubuntu, Red Hat OS, MorphOS |
|
42 |
+
| Protocol | TLS, FTPS, HTTP 404 |
|
43 |
## Model details
|
44 |
|
45 |
+
Paper: https://arxiv.org/abs/2308.10564
|
46 |
|
47 |
Code: https://github.com/taidnguyen/software_entity_recognition
|
48 |
|
49 |
+
Finetuned from model: `bert-base-cased`
|
50 |
+
|
51 |
+
Checkpoint for large version: https://huggingface.co/taidng/wikiser-bert-large
|
52 |
|
53 |
## How to use
|
54 |
|