File size: 9,955 Bytes
58daad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0696230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e6230
0696230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---

# Uploaded  model

- **Developed by:** taka00770078
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

```python
最終課題コンペ用 Fine-tuning テンプレート(unsloth)

# Google Colab の場合は上記の環境構築手順を行なわず、単にこのセルから実行していってください。
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

# Google Colab のデフォルトで入っているパッケージをアップグレード(Moriyasu さんありがとうございます)
!pip install --upgrade torch
!pip install --upgrade xformers

# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
# Google Colabでは実行不要
!pip install ipywidgets --upgrade

# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
    !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"

# Hugging Face Token を指定
# 下記の URL から Hugging Face Token を取得できますので下記の HF_TOKEN に入れてください。
# Write権限を付与してください。
# https://huggingface.co/settings/tokens
HF_TOKEN = ”your-token” #@param {type:"string"}

# llm-jp/llm-jp-3-13bを4bit量子化のqLoRA設定でロード。

from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-it" #Fine-Tuningしたモデルにつけたい名前、it: Instruction Tuning
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
    model,
    r = 32,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 32,
    lora_dropout = 0.05,
    bias = "none",
    use_gradient_checkpointing = "unsloth",
    random_state = 3407,
    use_rslora = False,
    loftq_config = None,
    max_seq_length = max_seq_length,
)

# 学習に用いるデータセットの指定
# 今回はLLM-jp の公開している Ichikara Instruction を使います。データにアクセスするためには申請が必要ですので、使いたい方のみ申請をしてください。
# Ichikara Instruciton を Hugging Face Hub にて公開することはお控えください。  
# また、CC-BY-NC-SAですのでモデルはライセンスを継承する前提でお使いください。  

# 下記のリンクから申請を終えた先に Google Drive があり、Distribution20241221_all というフォルダごとダウンロードしてください。
# 今回は「ichikara-instruction-003-001-1.json」を使います。必要であれば展開(!unzip など)し、データセットのパスを適切に指定してください。
# omnicampusの開発環境では取得したデータを左側にドラッグアンドドロップしてお使いください。
# Google Colab の場合も左のサイドバーよりドラッグ&ドロップでアップデートしてください。

# https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
# 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)

from datasets import load_dataset

#dataset = load_dataset("json", data_files="./ichikara-instruction-003-001-1.json")
dataset = load_dataset("json", data_files="./processed_dataset2.json")
# パスの指定にご注意ください。アップロードしたファイルを右クリックし、「パスをコピー」をクリック、上記の data_files と合致していることをご確認ください。Omnicampus のディレクトリ構造とは異なるかもしれません。

# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""


"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
    input = examples["text"] # 入力データ
    output = examples["output"] # 出力データ
    text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
    return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass

# # 各データにフォーマットを適用
dataset = dataset.map(
    formatting_prompts_func,
    num_proc= 4, # 並列処理数を指定
)

dataset

# データを確認
print(dataset["train"]["formatted_text"][3])

"""
training_arguments: 学習の設定

  - output_dir:
      -トレーニング後のモデルを保存するディレクトリ

  - per_device_train_batch_size:
      - デバイスごとのトレーニングバッチサイズ

  - per_device_eval_batch_size:
      - デバイスごとの評価バッチサイズ

  - gradient_accumulation_steps:
      - 勾配を更新する前にステップを積み重ねる回数

  - optim:
      - オプティマイザの設定

  - num_train_epochs:
      - エポック数

  - eval_strategy:
      - 評価の戦略 ("no"/"steps"/"epoch")

  - eval_steps:
      - eval_strategyが"steps"のとき、評価を行うstep間隔

  - logging_strategy:
      - ログ記録の戦略

  - logging_steps:
      - ログを出力するステップ間隔

  - warmup_steps:
      - 学習率のウォームアップステップ数

  - save_steps:
      - モデルを保存するステップ間隔

  - save_total_limit:
      - 保存しておくcheckpointの数

  - max_steps:
      - トレーニングの最大ステップ数

  - learning_rate:
      - 学習率

  - fp16:
      - 16bit浮動小数点の使用設定(第8回演習を参考にすると良いです)

  - bf16:
      - BFloat16の使用設定

  - group_by_length:
      -  入力シーケンスの長さによりバッチをグループ化 (トレーニングの効率化)

  - report_to:
      - ログの送信先 ("wandb"/"tensorboard"など)
"""
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset=dataset["train"],
    max_seq_length = max_seq_length,
    dataset_text_field="formatted_text",
    packing = False,
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        num_train_epochs = 1,
        logging_steps = 10,
        warmup_steps = 10,
        save_steps=100,
        save_total_limit=2,
        max_steps=-1,
        learning_rate = 2e-4,
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        group_by_length=True,
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",
    ),
)

#@title 現在のメモリ使用量を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

#@title 学習実行
trainer_stats = trainer.train()

  # ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("/content//elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

# 学習したモデルを用いてタスクを実行
from tqdm import tqdm

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

# jsonlで保存
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

# LoRAアダプタだけ保存
model.push_to_hub_merged(
    new_model_id+"_lora",
    tokenizer=tokenizer,
    save_method="lora",
    token=HF_TOKEN,
    private=True
)
```