--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: meat_calssify_fresh_crop_V_0_4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7935483870967742 --- # meat_calssify_fresh_crop_V_0_4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3588 - Accuracy: 0.7935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0748 | 1.0 | 617 | 0.9992 | 0.5290 | | 1.0075 | 2.0 | 1234 | 1.1657 | 0.4774 | | 1.1387 | 3.0 | 1851 | 1.7110 | 0.3355 | | 1.2272 | 4.0 | 2468 | 1.0090 | 0.5032 | | 1.1872 | 5.0 | 3085 | 1.0040 | 0.5871 | | 1.1936 | 6.0 | 3702 | 1.4017 | 0.5484 | | 1.1596 | 7.0 | 4319 | 1.2642 | 0.5935 | | 1.1932 | 8.0 | 4936 | 1.5967 | 0.5161 | | 1.1215 | 9.0 | 5553 | 1.4047 | 0.6194 | | 1.097 | 10.0 | 6170 | 1.2934 | 0.5806 | | 1.0044 | 11.0 | 6787 | 1.3448 | 0.6323 | | 0.8965 | 12.0 | 7404 | 1.3799 | 0.6645 | | 0.9943 | 13.0 | 8021 | 1.3963 | 0.6581 | | 0.9558 | 14.0 | 8638 | 1.7787 | 0.5742 | | 0.8692 | 15.0 | 9255 | 1.4618 | 0.6516 | | 0.8126 | 16.0 | 9872 | 1.2486 | 0.7097 | | 0.8093 | 17.0 | 10489 | 1.1204 | 0.7226 | | 0.6681 | 18.0 | 11106 | 1.7933 | 0.6452 | | 0.5894 | 19.0 | 11723 | 1.2285 | 0.7355 | | 0.4993 | 20.0 | 12340 | 1.7193 | 0.6516 | | 0.4736 | 21.0 | 12957 | 1.7766 | 0.6774 | | 0.4952 | 22.0 | 13574 | 1.8535 | 0.6516 | | 0.5312 | 23.0 | 14191 | 1.7282 | 0.6774 | | 0.3942 | 24.0 | 14808 | 1.9881 | 0.6516 | | 0.4166 | 25.0 | 15425 | 1.6196 | 0.6903 | | 0.4656 | 26.0 | 16042 | 1.6721 | 0.6774 | | 0.326 | 27.0 | 16659 | 2.1897 | 0.6387 | | 0.3692 | 28.0 | 17276 | 1.6734 | 0.6968 | | 0.3956 | 29.0 | 17893 | 1.6272 | 0.7290 | | 0.3108 | 30.0 | 18510 | 1.6487 | 0.7548 | | 0.2318 | 31.0 | 19127 | 1.8501 | 0.6968 | | 0.3835 | 32.0 | 19744 | 1.7877 | 0.6774 | | 0.3779 | 33.0 | 20361 | 1.4747 | 0.7355 | | 0.2913 | 34.0 | 20978 | 1.6122 | 0.7355 | | 0.275 | 35.0 | 21595 | 1.9130 | 0.6839 | | 0.2483 | 36.0 | 22212 | 1.9305 | 0.6839 | | 0.2389 | 37.0 | 22829 | 1.5973 | 0.7419 | | 0.3375 | 38.0 | 23446 | 1.2684 | 0.7742 | | 0.1867 | 39.0 | 24063 | 1.7777 | 0.7484 | | 0.2066 | 40.0 | 24680 | 1.5134 | 0.7613 | | 0.2555 | 41.0 | 25297 | 1.9315 | 0.6839 | | 0.1508 | 42.0 | 25914 | 1.6165 | 0.7484 | | 0.1262 | 43.0 | 26531 | 1.8465 | 0.7290 | | 0.1113 | 44.0 | 27148 | 2.0645 | 0.7161 | | 0.1692 | 45.0 | 27765 | 1.7539 | 0.7484 | | 0.0973 | 46.0 | 28382 | 2.0104 | 0.7161 | | 0.166 | 47.0 | 28999 | 1.6435 | 0.7742 | | 0.1476 | 48.0 | 29616 | 1.6865 | 0.7677 | | 0.1616 | 49.0 | 30233 | 2.1759 | 0.6903 | | 0.1715 | 50.0 | 30850 | 1.3588 | 0.7935 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0 - Datasets 2.19.2 - Tokenizers 0.19.1