--- base_model: - openai/clip-vit-base-patch32 datasets: - nateraw/rendered-sst2 metrics: - accuracy --- # Model Card ## Model Details - Architecture: ViT-Base with patch size 32 - Training Data: rendered-sst2 dataset ## Training Details Adam Optimizer with a constant learning rate 1e-5 for 4000 steps training (batch_size=32). Only the vision encoder is fine-tuned. ## Evaluation Results - pre-trained: 0.5864909291267395 - fine-tuned: 0.7127951383590698 ## Usage load vision model ```python from transformers import CLIPVisionModel vision_model = CLIPVisionModel.from_pretrained('tanganke/clip-vit-base-patch32_rendered-sst2') ``` substitute the vision encoder of clip ```python from transformers import CLIPModel clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") clip_model.vision_model.load_state_dict(vision_model.vision_model.state_dict()) ```