File size: 8,352 Bytes
caaf34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3fdf7
caaf34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc94d9
caaf34f
6527e94
caaf34f
 
 
 
 
 
 
e5c29b5
 
 
 
 
6527e94
 
 
 
 
caaf34f
 
 
 
 
 
 
 
 
 
 
 
6527e94
64dc4aa
caaf34f
6527e94
caaf34f
6527e94
caaf34f
 
 
 
 
 
 
 
 
 
6527e94
caaf34f
 
 
 
 
6527e94
caaf34f
6527e94
 
 
 
 
 
caaf34f
 
 
 
 
ef3fdf7
df39d2c
caaf34f
df39d2c
 
caaf34f
df39d2c
caaf34f
 
 
 
 
 
 
df39d2c
caaf34f
 
 
 
 
 
 
 
ef3fdf7
 
 
 
 
 
 
 
 
 
caaf34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from typing import Optional, Union, Iterator
from functools import partial

from datasets import load_dataset
from litdata import optimize, TokensLoader
from litgpt.tokenizer import Tokenizer
from litdata import StreamingDataset


def batch_dict_iterator(path: str,
                        name: Optional[str]=None,
                        data_dir: Optional[str]=None,
                        data_files: Optional[str]=None,
                        keep_in_memory: bool=False,
                        revision: Optional[str]=None,
                        split: str='train',
                        num_proc: Optional[int]=None,
                        format: Optional[str]=None) -> Iterator[str]:
    assert isinstance(format, str) or callable(format)

    dataset = load_dataset(path=path,
                           name=name,
                           data_dir=data_dir,
                           data_files=data_files,
                           keep_in_memory=keep_in_memory,
                           revision=revision,
                           split=split,
                           trust_remote_code=True,
                           num_proc=num_proc)

    if callable(format):
        for row in dataset:
            text = format(row)
            yield text
    else:
        for row in dataset:
            text = format.format(**row)
            yield text


def batch_iterator(dataset_config: Union[list, dict]):
    if isinstance(dataset_config, dict):
        for text in batch_dict_iterator(**dataset_config):
            yield text
    elif isinstance(dataset_config, list):
        for dc in dataset_config:
            for text in batch_dict_iterator(**dc):
                yield text
    else:
        raise ValueError('')


def tokenize_fn(dataset_config: Union[dict, list], tokenizer: Optional[Tokenizer]=None):
    assert isinstance(dataset_config, (dict, list))

    for text in batch_iterator(dataset_config):
        text_ids = tokenizer.encode(text, bos=False, eos=True)
        yield text_ids


datasets_configs = [
    #
    # general knowledge
    #
    # 3.18 GB, 1,010,500
    {'path': 'JeanKaddour/minipile', 'split': 'validation+test', 'format': lambda n: n['text']},
    [
        {'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
        for i in range(0, 100, 20)
    ],

    #
    # multilingual text
    #
    # 138 MB, 205,568
    {'path': 'CohereForAI/aya_dataset', 'format': '{inputs} {targets}'},
    [
        # 193 MB, 1,141,967
        {'path': 'xu-song/cc100-samples', 'name': name, 'split': 'train', 'format': lambda n: n['text']}
        for name in [
            'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
            'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
            'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
            'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
            'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
            'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
            'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
            'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
            'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
            'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
            'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
            'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
            'zh-Hans', 'zh-Hant', 'zu',
        ]
    ],
    [
        # ~3 GB, 4,976,850
        {'path': 'saillab/taco-datasets', 'data_dir': name, 'split': 'train', 'format': '{instruction} {input} {output}'}
        for name in [
            # 'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
            'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
        ]
    ],

    #
    # general knowledge
    #
    ## ~17.6 GB, ~6.41M rows
    # [
    #     {'path': 'wikimedia/wikipedia', 'name': '20231101.en', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
    #     for i in range(0, 100, 20)
    # ],
    ## 2.89 GB, 430,000, English September of 2017
    # [
    #     {'path': 'jordiclive/wikipedia-summary-dataset', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['summary']}
    #     for i in range(0, 100, 20)
    # ],
    # 65.1 MB, 7,819
    {'path': 'Sketched33/Cities_Wikipedia_Information', 'format': lambda n: n['wikipedia_content']},

    #
    # misc
    #
    # 472 KB, 5,034
    {'path': 'badrex/llm-emoji-dataset', 'format': '{character} {unicode} {short description} {tags} {LLM description}'},

    #
    # math
    #
    # 2.87 GB, 552,000 - images/text - we use only latex text, top 10%
    {'path': 'OleehyO/latex-formulas', 'data_dir': 'cleaned_formulas', 'split': 'train[:10%]', 'format': lambda n: n['latex_formula']},
    # 12.2 MB, 500,000
    {'path': 'fblgit/simple-math', 'revision': 'refs/convert/parquet', 'split': 'train+test', 'format': '{instruction} = {output}'},
    # 125 MB, 1,000,000
    {'path': 'Gusarich/math-expressions-1m', 'revision': 'refs/convert/parquet', 'split': 'train', 'format': '{expression} = {result}'},
    ## 3.49 GB, 22,259,474
    # [
    #     {'path': 'AtlasUnified/atlas-math-sets', 'split': f'train[{i}%:{i + 20}%]+validation+test', 'format': '{instruction} . {output}'}
    #     for i in range(0, 100, 20)
    # ],
    ## 9.05 GB, 2,583,257 - unsafe
    # [
    #     {'path': 'gair-prox/open-web-math-pro', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['text']}
    #     for i in range(0, 100, 20)
    # ],
    # 12.6 GB, 21,972,791 - we use 1M subset - 639 MB, 1,000,000
    [
        {'path': 'nvidia/OpenMathInstruct-2', 'split': f'train_1M[{i}%:{i + 20}%]', 'format': '{problem} {generated_solution} {expected_answer}'}
        for i in range(0, 100, 20)
    ],

    #
    # stem
    #
    ## 1.44 GB, 63,357
    # [
    #     {'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 20}%]', 'format': lambda n: n['markdown']}
    #     for i in range(0, 100, 20)
    # ],

    #
    # code
    #
    [
        # 1.73 GB, 541,041
        {'path': 'bigcode/the-stack-smol-xl', 'data_dir': f'data/{name}', 'format': lambda n: n['content']}
        for name in [
            # 'batchfile' - unsafe
            # 'powershell' - unsafe
            'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
            'augeas', 'awk', 'bison', 'bluespec', 'c',
            'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
            'css', 'cuda', 'dart', 'dockerfile', 'elixir',
            'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
            'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
            'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
            'literate-agda', 'literate-coffeescript', 'literate-haskell',
            'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
            'ocaml', 'pascal', 'perl', 'php', 'prolog',
            'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
            'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
            'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
            'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
            'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
            'yacc', 'zig',
        ]
    ],
    ## 7.81 GB, ~2,804,025
    # [
    #     {'path': 'rombodawg/code_bagel_hermes-2.5', 'split': f'train[{i}%:{i + 20}%]', 'format': '{input} {output}'}
    #     for i in range(0, 100, 20)
    # ],
    ## 6.61 GB, ~2,646,394
    # [
    #     {'path': 'rombodawg/code_bagel', 'split': f'train[{i}%:{i + 20}%]', 'format': '{input} {output}'}
    #     for i in range(0, 100, 20)
    # ],
]

outputs = optimize(
    fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
    inputs=datasets_configs,
    output_dir='../pretrain-data/',
    # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
    chunk_size=(512 * 32000),
    num_workers=32,
    reorder_files=False,
)

#
# total number of chunks
#
dataset = StreamingDataset(
  input_dir='../pretrain-data/',
  item_loader=TokensLoader(block_size=512),
)

print(len(dataset))