File size: 7,845 Bytes
caaf34f dfc94d9 caaf34f dfc94d9 caaf34f dfc94d9 caaf34f dfc94d9 caaf34f dfc94d9 caaf34f 804c80b caaf34f cbf2cc7 caaf34f 804c80b caaf34f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import gc
from datasets import load_dataset
from transformers import PreTrainedTokenizerFast
from tokenizers import Tokenizer, normalizers, pre_tokenizers, processors, decoders
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
#
# datasets
#
def batch_iterator():
# code
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
for row in dataset:
for n in row['keywords']:
yield n
del dataset
gc.collect()
# code
dataset = (
load_dataset('bigcode/the-stack-smol-xs', data_dir=f'data/{name}', split='train', trust_remote_code=True)
for name in [
# 'batchfile' - unsafe
# 'powershell' - unsafe
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
'augeas', 'awk', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
'ocaml', 'pascal', 'perl', 'php', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
'yacc', 'zig',
]
)
for d in dataset:
for text in d['content']:
yield text
del dataset
gc.collect()
## math - unsafe
# dataset = load_dataset('gair-prox/open-web-math-pro', split='train[:1%]')
#
# for text in dataset['text']:
# yield text
#
# del dataset
# gc.collect()
# math
dataset = load_dataset('OleehyO/latex-formulas', 'cleaned_formulas', split='train[:5%]')
for text in dataset['latex_formula']:
yield text
del dataset
gc.collect()
# # text
# dataset = load_dataset('JeanKaddour/minipile', split='train[:1%]')
#
# for text in dataset['text']:
# yield text
#
# del dataset
# gc.collect()
# text
dataset = (
load_dataset('saillab/taco-datasets', data_dir=data_dir, split='train[:5%]')
for data_dir in [
'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
]
)
for d in dataset:
for row in d:
for n in row:
yield row['instruction'] + '\n' + row['input'] + '\n' + row['output']
del dataset
gc.collect()
# text
dataset = (
load_dataset('xu-song/cc100-samples', lang, split='train[:5%]')
for lang in [
'en', 'hr', 'sr', 'ru',
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'eo', 'es',
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'ht', 'hu',
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
'qu', 'rm', 'ro', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
'so', 'sq', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
'zh-Hans', 'zh-Hant', 'zu',
]
)
for d in dataset:
for text in d['text']:
yield text
del dataset
gc.collect()
#
# special_tokens
#
special_tokens = [
'<unk>',
'<|begin_of_text|>',
'<|end_of_text|>',
'<|start_header_id|>',
'<|end_header_id|>',
'<|eom_id|>',
'<|eot_id|>',
'system',
'user',
'assistant',
'tool',
'agent',
'internal', # thinking
# tool/function calling
'<tools>',
'</tools>',
'<tool>',
'</tool>',
'<tool_call>',
'</tool_call>',
'<tool_response>',
'</tool_response>',
'"arguments"',
'"name"',
# misc
'<input>',
'</input>',
'<output>',
'</output>',
'<query>',
'</query>',
'<key>',
'</key>',
'<value>',
'</value>',
'<text>',
'</text>',
'<code>',
'</code>',
'<image>',
'</image>',
'<file>',
'</file>',
# qa
'<question>',
'</question>',
'<answer>',
'</answer>',
# thought
'<thought>',
'</thought>',
'<plan>',
'</plan>',
'<vote>',
'</vote>',
'<passage>',
'</passage>',
# reasoning
'<reasoning>',
'</reasoning>',
'<acting>',
'</acting>',
'<action>',
'</action>',
'<observation>',
'</observation>',
'<claim>',
'</claim>',
# reflection
'<thinking>',
'</thinking>',
'<reflection>',
'</reflection>',
'<step>',
'</step>',
# graph
'<graph>',
'</graph>',
'<edge>',
'</edge>',
'<source>',
'</source>',
'<destination>',
'</destination>',
'<relation>',
'</relation>',
# '<value>',
# '</value>',
]
for i in range(2, 25):
special_tokens.append(' ' * i)
for i in range(2, 25):
special_tokens.append('\t' * i)
for i in range(2, 25):
special_tokens.append('\n' * i)
for i in range(2, 25):
special_tokens.append('\r' * i)
for i in range(2, 25):
special_tokens.append('\r\n' * i)
for i in range(256):
special_tokens.append(f'<0x{i:02X}>')
for i in range(256):
special_tokens.append(f'<|reserved_special_token_{i}|>')
#
# train tokenizer
#
bpe = BPE(unk_token='<unk>', fuse_unk=True, byte_fallback=True)
tokenizer = Tokenizer(bpe)
tokenizer.normalizer = normalizers.Sequence([
normalizers.Prepend('▁'),
normalizers.Replace(' ', '▁'),
])
tokenizer.pre_tokenizer = None
tokenizer.post_processor = processors.TemplateProcessing(
single='$A:0', # $A represents the token, :0 specifies the type ID for single sequences
pair='$A:0 $B:1', # For pairs, we specify type IDs for both tokens
special_tokens=[],
)
tokenizer.decoder = decoders.Sequence([
decoders.Replace('▁', ' '),
decoders.ByteFallback(),
decoders.Fuse(),
decoders.Strip(' ', 1, 0),
])
trainer = BpeTrainer(
vocab_size=262144, # 256 * 1024
min_frequency=10,
special_tokens=special_tokens,
max_token_length=8,
)
tokenizer.train_from_iterator(batch_iterator(), trainer)
tokenizer.save('../tokenizer.json')
tokenizer.model.save('../')
CHAT_TEMPLATE = (
"{{ bos_token }}"
"{% for message in messages %}"
"{{'<|start_header_id|>' + message['role'] + '<|end_header_id|>' + message['content'] + '<|eot_id|>'}}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ '<|start_header_id|>assistant<|end_header_id|>' }}"
"{% else %}"
"{{ eos_token }}"
"{% endif %}"
)
fast_tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
chat_template=CHAT_TEMPLATE,
bos_token='<|begin_of_text|>',
eos_token='<|end_of_text|>',
unk_token='<unk>',
clean_up_tokenization_spaces=True,
)
fast_tokenizer.save_pretrained('../')
|