# https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct/blob/main/config.json | |
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with | |
# ``model_config``. (type: Optional[str], default: null) | |
model_name: "Llama-3.1-8B" | |
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with | |
# ``model_config``. (type: Optional[Config], default: null) | |
model_config: | |
padded_vocab_size: 262144 | |
vocab_size: 262144 | |
block_size: 8192 | |
n_layer: 32 | |
n_head: 32 | |
head_size: 64 | |
n_embd: 256 | |
n_query_groups: 8 | |
rotary_percentage: 1.0 | |
parallel_residual: false | |
shared_attention_norm: false | |
bias: false | |
norm_class_name: "RMSNorm" | |
norm_eps: 1e-05 | |
mlp_class_name: "LLaMAMLP" | |
intermediate_size: 1024 | |
rope_base: 500000 | |
rope_adjustments: | |
factor: 32.0 | |
low_freq_factor: 1.0 | |
high_freq_factor: 4.0 | |
original_max_seq_len: 8192 | |
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in | |
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain) | |
out_dir: "../out/pretrain/" | |
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null) | |
# precision: bf16-mixed | |
precision: bf16-true | |
# Optional path to a checkpoint directory to initialize the model from. | |
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null) | |
initial_checkpoint_dir: | |
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume | |
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing | |
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists. | |
# (type: Union[bool, Literal["auto"], Path], default: False) | |
# resume: false | |
resume: "auto" | |
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``. | |
data: | |
class_path: LitData | |
init_args: | |
data_path: "../pretrain-data/" | |
num_workers: 32 | |
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details | |
train: | |
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000) | |
save_interval: 500 | |
# Number of iterations between logging calls (type: int, default: 1) | |
log_interval: 1 | |
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 512) | |
global_batch_size: 512 | |
# Number of samples per data-parallel rank (type: int, default: 4) | |
micro_batch_size: 11 | |
# Number of iterations with learning rate warmup active (type: int, default: 2000) | |
lr_warmup_steps: 2000 | |
# Number of epochs to train on (type: Optional[int], default: null) | |
epochs: | |
# Total number of tokens to train on (type: Optional[int], default: 3000000000000) | |
max_tokens: 9889496064 # 9657711 * 512 * 2 | |
# max_tokens: 4944748032 # 9657711 * 512 * 1 | |
# Limits the number of optimizer steps to run. (type: Optional[int], default: null) | |
max_steps: | |
# Limits the length of samples. Off by default (type: Optional[int], default: null) | |
max_seq_length: 512 | |
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False) | |
tie_embeddings: true | |
# (type: Optional[float], default: 1.0) | |
max_norm: 1.0 | |
# (type: float, default: 4e-05) | |
min_lr: 4e-05 | |
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details | |
eval: | |
# Number of optimizer steps between evaluation calls (type: int, default: 1000) | |
interval: 100 | |
# Number of tokens to generate (type: Optional[int], default: null) | |
max_new_tokens: | |
# Number of iterations (type: int, default: 100) | |
max_iters: 100 | |
# Whether to evaluate on the validation set at the beginning of the training | |
initial_validation: false | |
# Whether to evaluate on the validation set at the end the training | |
final_validation: true | |
# Optimizer-related arguments | |
optimizer: | |
# class_path: torch.optim.AdamW | |
class_path: grokadamw.GrokAdamW | |
init_args: | |
# (type: float, default: 0.001) | |
lr: 1e-3 | |
# (type: float, default: 0.01) | |
weight_decay: 1e-2 | |
# (type: tuple, default: (0.9,0.999)) | |
betas: | |
- 0.9 | |
- 0.999 | |
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto) | |
devices: auto | |
# How many nodes to use. (type: int, default: 1) | |
num_nodes: 1 | |
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data | |
# module require this. (type: Optional[Path], default: null) | |
tokenizer_dir: "../" | |
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard) | |
logger_name: "wandb" | |
# The random seed to use for reproducibility. (type: int, default: 42) | |
seed: 23 | |