File size: 7,482 Bytes
113dbd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import sys
import logging
from flask import Flask, request, jsonify
from flask_cors import CORS
from vllm import LLM, SamplingParams
# from serve import get_model_api
import os
import os
from pathlib import Path
import csv
import json
import openai
import time
import pandas as pd
# Set up the OpenAI API client
api_key = "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"
openai.api_key = api_key
# Set up the chatGPT model and prompt
model_engine = "text-davinci-003"
import gradio as gr
import time
import argparse
from vllm import LLM, SamplingParams
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str) # model path
parser.add_argument("--n_gpu", type=int, default=1) # n_gpu
return parser.parse_args()
def echo(message, history, system_prompt, temperature, max_tokens):
response = f"System prompt: {system_prompt}\n Message: {message}. \n Temperature: {temperature}. \n Max Tokens: {max_tokens}."
for i in range(min(len(response), int(max_tokens))):
time.sleep(0.05)
yield response[: i+1]
# def get_llm_result(input_data, input_domain):
def get_llm_result(input_sys_prompt_str, input_history_str, prompt_str, llm):
# data is file path of topic result
prompt = ""
def predict(message, history, system_prompt, temperature, max_tokens):
instruction = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. "
for human, assistant in history:
instruction += 'USER: '+ human + ' ASSISTANT: '+ assistant + '</s>'
instruction += 'USER: '+ message + ' ASSISTANT:'
problem = [instruction]
stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"]
sampling_params = SamplingParams(temperature=temperature, top_p=1, max_tokens=max_tokens, stop=stop_tokens)
completions = llm.generate(problem, sampling_params)
for output in completions:
prompt = output.prompt
generated_text = output.outputs[0].text
return generated_text
# for idx in range(len(generated_text)):
# yield generated_text[:idx+1]
try:
# completion = openai.Completion.create(
# engine=model_engine,
# prompt=prompt,
# max_tokens=3000,
# n=1,
# stop=None,
# temperature=0.5,
# )
#
# response = completion.choices[0].text
# shorten_response = response.replace("\n", "").strip()
# len_response = len(shorten_response.split(" "))
# if len_response >= 3500:
# shorten_response = "".join(shorten_response.split(" ")[:3500])
# print("X"*10)
# print(f"shorten_response is {shorten_response}")
# list_shorten = shorten_response.split(" ")
# print(list_shorten)
# print(f"length is {len(list_shorten)}")
# title_prompt = f"{shorten_response},给这个文章写一个头条号风格的标题。增加标题的吸引力,可读性。"
# title_completion = openai.Completion.create(
# engine=model_engine,
# prompt=title_prompt,
# max_tokens=200,
# n=1,
# stop=None,
# temperature=0.5,
# )
# title_response = title_completion.choices[0].text
history = input_history_str
prompt = prompt_str
system_prompt = input_sys_prompt_str
response = predict(prompt, history, system_prompt, 0.5, 3000)
print(response)
# if not os.path.isdir(topic_file_path):
# print("File folder not exist")
# topic_result_file = ""
# topic_file_name_pattern = "step10_json_filestep9_merge_rewrite_"
# for filename in os.listdir(topic_file_path):
# if filename.startswith(topic_file_name_pattern):
# topic_result_file = os.path.join(topic_file_path, filename)
#
# data_aligned = dict()
# output_dir_name = "."
# output_dir = os.path.join(output_dir_name, "result_topic_file")
# Path(output_dir).mkdir(parents=True, exist_ok=True)
# write_file_name = "save_server_" + topic_file_path.split("\\")[-1]
# write_output_file_path = os.path.join(output_dir, write_file_name)
#
# with open(topic_result_file, encoding="utf8") as f:
# json_data = json.load(f)
# return json_data
return response, response
except Exception as ex:
print("File not exist")
raise ex
# config = Config()
# model = NERModel(config)
# define the app
app = Flask(__name__)
CORS(app) # needed for cross-domain requests, allow everything by default
# logging for heroku
if 'DYNO' in os.environ:
app.logger.addHandler(logging.StreamHandler(sys.stdout))
app.logger.setLevel(logging.INFO)
app.logger.addHandler(logging.StreamHandler(sys.stdout))
app.logger.setLevel(logging.INFO)
# load the model
# model_api = get_model_api()
# API route
@app.route('/api', methods=['POST'])
def api():
"""API function
All model-specific logic to be defined in the get_model_api()
function
"""
input_data = request.json
log = open("test_topic_serve_log.csv", 'a', encoding='utf-8')
app.logger.info("api_input: " + str(input_data))
log.write("api_input: " + str(input_data))
# input_title_str = input_data['title']
# input_domain_str = input_data['domain']
input_sys_prompt_str = input_data['system_prompt']
input_USER_str = input_data['USER']
# input_ASSISTANT_str = input_data['ASSISTANT']
input_history_str = input_data['history']
# output_data = model_api(input_title_str, input_domain_str
model_path = "/workspaceblobstore/caxu/trained_models/13Bv2_497kcontinueroleplay_dsys_2048_e4_2e_5/checkpoint-75"
llm = LLM(model=model_path, tensor_parallel_size=1)
output_data = get_llm_result(input_sys_prompt_str, input_history_str, input_USER_str, llm)
app.logger.info("api_output: " + str(output_data))
response = jsonify(output_data)
log.write("api_output: " + str(output_data) + "\n")
return response
# API2 route
@app.route('/labelapi', methods=['POST'])
def labelapi():
"""label API function
record user label action
All model-specific logic to be defined in the get_model_api()
function
"""
input_data = request.json
log = open("test_topic_label_log.csv", 'a', encoding='utf-8')
app.logger.info("api_input: " + str(input_data))
log.write("api_input: " + str(input_data)+ "\n")
output_data = {"input": input_data, "output": "record_success"}
response = output_data
return response
@app.route('/')
def index():
return "Index API"
# HTTP Errors handlers
@app.errorhandler(404)
def url_error(e):
return """
Wrong URL!
<pre>{}</pre>""".format(e), 404
@app.errorhandler(500)
def server_error(e):
return """
An internal error occurred: <pre>{}</pre>
See logs for full stacktrace.
""".format(e), 500
if __name__ == '__main__':
# This is used when running locally.
# llm = LLM(model=model_path, tensor_parallel_size=1)
app.run(host='0.0.0.0',port=4455,debug=True)
# app.run(host='0.0.0.0',port=4456,debug=True)
|