File size: 11,120 Bytes
113dbd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import os
from pathlib import Path
import csv
import json
import openai
import time
import pandas as pd
# Set up the OpenAI API client
api_key = "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"
openai.api_key = api_key
# Set up the chatGPT model and prompt
model_engine = "text-davinci-003"
import gradio as gr
import time
import argparse
from vllm import LLM, SamplingParams
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str) # model path
parser.add_argument("--n_gpu", type=int, default=1) # n_gpu
return parser.parse_args()
def echo(message, history, system_prompt, temperature, max_tokens):
response = f"System prompt: {system_prompt}\n Message: {message}. \n Temperature: {temperature}. \n Max Tokens: {max_tokens}."
for i in range(min(len(response), int(max_tokens))):
time.sleep(0.05)
yield response[: i+1]
def align_data(data):
"""Given dict with lists, creates aligned strings
Adapted from Assignment 3 of CS224N
Args:
data: (dict) data["x"] = ["I", "love", "you"]
(dict) data["y"] = ["O", "O", "O"]
Returns:
data_aligned: (dict) data_align["x"] = "I love you"
data_align["y"] = "O O O "
"""
spacings = [max([len(seq[i]) for seq in data.values()])
for i in range(len(data[list(data.keys())[0]]))]
data_aligned = dict()
# for each entry, create aligned string
for key, seq in data.items():
str_aligned = ""
for token, spacing in zip(seq, spacings):
str_aligned += token + " " * (spacing - len(token) + 1)
data_aligned[key] = str_aligned
return data_aligned
def get_llm_result(input_data, input_domain):
# data is file path of topic result
ori_caption = input_data
# replace the static path as your azcopy target folder like: "C:\Users\zhengkai\PycharmProjects\pythonProject\sync_data"
# topic_file_path = "C:\\Users\zhengkai\PycharmProjects\pythonProject\sync_data\PreprocessData\\" + str(ori_caption) + "\step10_cook_json_file"
# prompt = (
# f"I want you to act as an Science Question Answering asker, ask in a Science Question style. I will speak to you \
# use a caption of an image you will mining the probable Science question and improved version of the problem in \
# Science Question style, in English. Keep the meaning same, but make them more science. I want you to only reply \
# the question and nothing else, do not write explanations. My first caption sentence is \"{ori_caption}\""
# # f"Tell me which scenarios in creator tool could improvement by creators of MSN through leverage ChatGPT."
# )
# prompt = f"{ori_caption},以这个句子为标题写一篇不少于1000字的{input_domain}专家风格的文章。每个段落多加一些细节和故事,增加文章的可读性。"
prompt = ""
def predict(message, history, system_prompt, temperature, max_tokens):
model_path = "/workspaceblobstore/caxu/trained_models/13Bv2_497kcontinueroleplay_dsys_2048_e4_2e_5/checkpoint-75"
llm = LLM(model=model_path, tensor_parallel_size=1)
instruction = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. "
for human, assistant in history:
instruction += 'USER: '+ human + ' ASSISTANT: '+ assistant + '</s>'
instruction += 'USER: '+ message + ' ASSISTANT:'
problem = [instruction]
stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"]
sampling_params = SamplingParams(temperature=temperature, top_p=1, max_tokens=max_tokens, stop=stop_tokens)
completions = llm.generate(problem, sampling_params)
for output in completions:
prompt = output.prompt
generated_text = output.outputs[0].text
return generated_text
# for idx in range(len(generated_text)):
# yield generated_text[:idx+1]
try:
# completion = openai.Completion.create(
# engine=model_engine,
# prompt=prompt,
# max_tokens=3000,
# n=1,
# stop=None,
# temperature=0.5,
# )
#
# response = completion.choices[0].text
# shorten_response = response.replace("\n", "").strip()
# len_response = len(shorten_response.split(" "))
# if len_response >= 3500:
# shorten_response = "".join(shorten_response.split(" ")[:3500])
# print("X"*10)
# print(f"shorten_response is {shorten_response}")
# list_shorten = shorten_response.split(" ")
# print(list_shorten)
# print(f"length is {len(list_shorten)}")
# title_prompt = f"{shorten_response},给这个文章写一个头条号风格的标题。增加标题的吸引力,可读性。"
# title_completion = openai.Completion.create(
# engine=model_engine,
# prompt=title_prompt,
# max_tokens=200,
# n=1,
# stop=None,
# temperature=0.5,
# )
# title_response = title_completion.choices[0].text
history = ""
prompt = ""
system_prompt = ""
response = predict(prompt, history, system_prompt, 0.5, 3000)
print(response)
# if not os.path.isdir(topic_file_path):
# print("File folder not exist")
# topic_result_file = ""
# topic_file_name_pattern = "step10_json_filestep9_merge_rewrite_"
# for filename in os.listdir(topic_file_path):
# if filename.startswith(topic_file_name_pattern):
# topic_result_file = os.path.join(topic_file_path, filename)
#
# data_aligned = dict()
# output_dir_name = "."
# output_dir = os.path.join(output_dir_name, "result_topic_file")
# Path(output_dir).mkdir(parents=True, exist_ok=True)
# write_file_name = "save_server_" + topic_file_path.split("\\")[-1]
# write_output_file_path = os.path.join(output_dir, write_file_name)
#
# with open(topic_result_file, encoding="utf8") as f:
# json_data = json.load(f)
# return json_data
return response, response
except Exception as ex:
print("File not exist")
raise ex
def get_topic_result(input_data, input_domain):
# data is file path of topic result
ori_caption = input_data
# replace the static path as your azcopy target folder like: "C:\Users\zhengkai\PycharmProjects\pythonProject\sync_data"
# topic_file_path = "C:\\Users\zhengkai\PycharmProjects\pythonProject\sync_data\PreprocessData\\" + str(ori_caption) + "\step10_cook_json_file"
# prompt = (
# f"I want you to act as an Science Question Answering asker, ask in a Science Question style. I will speak to you \
# use a caption of an image you will mining the probable Science question and improved version of the problem in \
# Science Question style, in English. Keep the meaning same, but make them more science. I want you to only reply \
# the question and nothing else, do not write explanations. My first caption sentence is \"{ori_caption}\""
# # f"Tell me which scenarios in creator tool could improvement by creators of MSN through leverage ChatGPT."
# )
prompt = f"{ori_caption},以这个句子为标题写一篇不少于1000字的{input_domain}专家风格的文章。每个段落多加一些细节和故事,增加文章的可读性。"
try:
completion = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=3000,
n=1,
stop=None,
temperature=0.5,
)
response = completion.choices[0].text
shorten_response = response.replace("\n", "").strip()
len_response = len(shorten_response.split(" "))
if len_response >= 3500:
shorten_response = "".join(shorten_response.split(" ")[:3500])
print("X"*10)
print(f"shorten_response is {shorten_response}")
list_shorten = shorten_response.split(" ")
print(list_shorten)
print(f"length is {len(list_shorten)}")
title_prompt = f"{shorten_response},给这个文章写一个头条号风格的标题。增加标题的吸引力,可读性。"
title_completion = openai.Completion.create(
engine=model_engine,
prompt=title_prompt,
max_tokens=200,
n=1,
stop=None,
temperature=0.5,
)
title_response = title_completion.choices[0].text
# print(response)
# if not os.path.isdir(topic_file_path):
# print("File folder not exist")
# topic_result_file = ""
# topic_file_name_pattern = "step10_json_filestep9_merge_rewrite_"
# for filename in os.listdir(topic_file_path):
# if filename.startswith(topic_file_name_pattern):
# topic_result_file = os.path.join(topic_file_path, filename)
#
# data_aligned = dict()
# output_dir_name = "."
# output_dir = os.path.join(output_dir_name, "result_topic_file")
# Path(output_dir).mkdir(parents=True, exist_ok=True)
# write_file_name = "save_server_" + topic_file_path.split("\\")[-1]
# write_output_file_path = os.path.join(output_dir, write_file_name)
#
# with open(topic_result_file, encoding="utf8") as f:
# json_data = json.load(f)
# return json_data
return response, title_response
except Exception as ex:
print("File not exist")
raise ex
def get_model_api():
"""Returns lambda function for api"""
def model_api(input_title, input_domain):
"""
Args:
input_data: submitted to the API, raw string
Returns:
output_data: after some transformation, to be
returned to the API
"""
# print("X"*10)
# print(f"input_title is {input_title}")
# print(f"input_data2 is {input_domain}")
punc = [",", "?", ".", ":", ";", "!", "(", ")", "[", "]"]
# preds, title_preds = get_topic_result(input_title, input_domain)
preds, title_preds = get_llm_result(input_title, input_domain)
output_data = {"input_title": input_title, "output": preds, "title_output": title_preds}
return output_data
return model_api
# config = Config()
# model = NERModel(config)
|