File size: 11,120 Bytes
113dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import os
from pathlib import Path
import csv
import json
import openai
import time
import pandas as pd

# Set up the OpenAI API client
api_key = "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"

openai.api_key = api_key

# Set up the chatGPT model and prompt
model_engine = "text-davinci-003"
import gradio as gr
import time
import argparse
from vllm import LLM, SamplingParams


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str)  # model path
    parser.add_argument("--n_gpu", type=int, default=1)  # n_gpu
    return parser.parse_args()

def echo(message, history, system_prompt, temperature, max_tokens):
    response = f"System prompt: {system_prompt}\n Message: {message}. \n Temperature: {temperature}. \n Max Tokens: {max_tokens}."
    for i in range(min(len(response), int(max_tokens))):
        time.sleep(0.05)
        yield response[: i+1]



def align_data(data):
    """Given dict with lists, creates aligned strings



    Adapted from Assignment 3 of CS224N



    Args:

        data: (dict) data["x"] = ["I", "love", "you"]

              (dict) data["y"] = ["O", "O", "O"]



    Returns:

        data_aligned: (dict) data_align["x"] = "I love you"

                           data_align["y"] = "O O    O  "



    """
    spacings = [max([len(seq[i]) for seq in data.values()])
                for i in range(len(data[list(data.keys())[0]]))]
    data_aligned = dict()

    # for each entry, create aligned string
    for key, seq in data.items():
        str_aligned = ""
        for token, spacing in zip(seq, spacings):
            str_aligned += token + " " * (spacing - len(token) + 1)

        data_aligned[key] = str_aligned

    return data_aligned

def get_llm_result(input_data, input_domain):
    # data is file path of topic result
    ori_caption = input_data
    # replace the static path as your azcopy target folder like: "C:\Users\zhengkai\PycharmProjects\pythonProject\sync_data"
    # topic_file_path = "C:\\Users\zhengkai\PycharmProjects\pythonProject\sync_data\PreprocessData\\" + str(ori_caption) + "\step10_cook_json_file"
    # prompt = (
    #     f"I want you to act as an Science Question Answering asker, ask in a Science Question style. I will speak to you \
    #     use a caption of an image you will mining the probable Science question and improved version of the problem in \
    #     Science Question style, in English.  Keep the meaning same, but make them more science. I want you to only reply \
    #     the question and nothing else, do not write explanations. My first caption sentence is \"{ori_caption}\""
    #     # f"Tell me which scenarios in creator tool could improvement by creators of MSN through leverage ChatGPT."
    # )
    # prompt = f"{ori_caption},以这个句子为标题写一篇不少于1000字的{input_domain}专家风格的文章。每个段落多加一些细节和故事,增加文章的可读性。"
    prompt = ""

    def predict(message, history, system_prompt, temperature, max_tokens):
        model_path = "/workspaceblobstore/caxu/trained_models/13Bv2_497kcontinueroleplay_dsys_2048_e4_2e_5/checkpoint-75"
        llm = LLM(model=model_path, tensor_parallel_size=1)
        instruction = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. "
        for human, assistant in history:
            instruction += 'USER: '+ human + ' ASSISTANT: '+ assistant + '</s>'
        instruction += 'USER: '+ message + ' ASSISTANT:'
        problem = [instruction]
        stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"]
        sampling_params = SamplingParams(temperature=temperature, top_p=1, max_tokens=max_tokens, stop=stop_tokens)
        completions = llm.generate(problem, sampling_params)
        for output in completions:
            prompt = output.prompt
            generated_text = output.outputs[0].text
            return generated_text
            # for idx in range(len(generated_text)):
            #     yield generated_text[:idx+1]
    try:
        # completion = openai.Completion.create(
        #     engine=model_engine,
        #     prompt=prompt,
        #     max_tokens=3000,
        #     n=1,
        #     stop=None,
        #     temperature=0.5,
        # )
        #
        # response = completion.choices[0].text
        # shorten_response = response.replace("\n", "").strip()
        # len_response = len(shorten_response.split(" "))
        # if len_response >= 3500:
        #     shorten_response = "".join(shorten_response.split(" ")[:3500])
        #     print("X"*10)
        #     print(f"shorten_response is {shorten_response}")
        #     list_shorten = shorten_response.split(" ")
        #     print(list_shorten)
        #     print(f"length is {len(list_shorten)}")
        # title_prompt = f"{shorten_response},给这个文章写一个头条号风格的标题。增加标题的吸引力,可读性。"
        # title_completion = openai.Completion.create(
        #     engine=model_engine,
        #     prompt=title_prompt,
        #     max_tokens=200,
        #     n=1,
        #     stop=None,
        #     temperature=0.5,
        # )
        # title_response = title_completion.choices[0].text
        history = ""
        prompt = ""
        system_prompt = ""

        response = predict(prompt, history, system_prompt, 0.5, 3000)

        print(response)
        # if not os.path.isdir(topic_file_path):
        #     print("File folder  not exist")
        # topic_result_file = ""
        # topic_file_name_pattern = "step10_json_filestep9_merge_rewrite_"
        # for filename in os.listdir(topic_file_path):
        #     if filename.startswith(topic_file_name_pattern):
        #         topic_result_file = os.path.join(topic_file_path, filename)
        #
        # data_aligned = dict()
        # output_dir_name = "."
        # output_dir = os.path.join(output_dir_name, "result_topic_file")
        # Path(output_dir).mkdir(parents=True, exist_ok=True)
        # write_file_name = "save_server_" + topic_file_path.split("\\")[-1]
        # write_output_file_path = os.path.join(output_dir, write_file_name)
        #
        # with open(topic_result_file, encoding="utf8") as f:
        #         json_data = json.load(f)
        #         return json_data
        return response, response

    except Exception as ex:
        print("File  not exist")
        raise ex


def get_topic_result(input_data, input_domain):
    # data is file path of topic result
    ori_caption = input_data
    # replace the static path as your azcopy target folder like: "C:\Users\zhengkai\PycharmProjects\pythonProject\sync_data"
    # topic_file_path = "C:\\Users\zhengkai\PycharmProjects\pythonProject\sync_data\PreprocessData\\" + str(ori_caption) + "\step10_cook_json_file"
    # prompt = (
    #     f"I want you to act as an Science Question Answering asker, ask in a Science Question style. I will speak to you \
    #     use a caption of an image you will mining the probable Science question and improved version of the problem in \
    #     Science Question style, in English.  Keep the meaning same, but make them more science. I want you to only reply \
    #     the question and nothing else, do not write explanations. My first caption sentence is \"{ori_caption}\""
    #     # f"Tell me which scenarios in creator tool could improvement by creators of MSN through leverage ChatGPT."
    # )
    prompt = f"{ori_caption},以这个句子为标题写一篇不少于1000字的{input_domain}专家风格的文章。每个段落多加一些细节和故事,增加文章的可读性。"

    try:
        completion = openai.Completion.create(
            engine=model_engine,
            prompt=prompt,
            max_tokens=3000,
            n=1,
            stop=None,
            temperature=0.5,
        )

        response = completion.choices[0].text
        shorten_response = response.replace("\n", "").strip()
        len_response = len(shorten_response.split(" "))
        if len_response >= 3500:
            shorten_response = "".join(shorten_response.split(" ")[:3500])
            print("X"*10)
            print(f"shorten_response is {shorten_response}")
            list_shorten = shorten_response.split(" ")
            print(list_shorten)
            print(f"length is {len(list_shorten)}")
        title_prompt = f"{shorten_response},给这个文章写一个头条号风格的标题。增加标题的吸引力,可读性。"
        title_completion = openai.Completion.create(
            engine=model_engine,
            prompt=title_prompt,
            max_tokens=200,
            n=1,
            stop=None,
            temperature=0.5,
        )
        title_response = title_completion.choices[0].text

        # print(response)
        # if not os.path.isdir(topic_file_path):
        #     print("File folder  not exist")
        # topic_result_file = ""
        # topic_file_name_pattern = "step10_json_filestep9_merge_rewrite_"
        # for filename in os.listdir(topic_file_path):
        #     if filename.startswith(topic_file_name_pattern):
        #         topic_result_file = os.path.join(topic_file_path, filename)
        #
        # data_aligned = dict()
        # output_dir_name = "."
        # output_dir = os.path.join(output_dir_name, "result_topic_file")
        # Path(output_dir).mkdir(parents=True, exist_ok=True)
        # write_file_name = "save_server_" + topic_file_path.split("\\")[-1]
        # write_output_file_path = os.path.join(output_dir, write_file_name)
        #
        # with open(topic_result_file, encoding="utf8") as f:
        #         json_data = json.load(f)
        #         return json_data
        return response, title_response

    except Exception as ex:
        print("File  not exist")
        raise ex

def get_model_api():
    """Returns lambda function for api"""

    def model_api(input_title, input_domain):
        """

        Args:

            input_data: submitted to the API, raw string



        Returns:

            output_data: after some transformation, to be

                returned to the API



        """
        # print("X"*10)
        # print(f"input_title is {input_title}")
        # print(f"input_data2 is {input_domain}")
        punc = [",", "?", ".", ":", ";", "!", "(", ")", "[", "]"]
        # preds, title_preds = get_topic_result(input_title, input_domain)
        preds, title_preds = get_llm_result(input_title, input_domain)
        output_data = {"input_title": input_title, "output": preds, "title_output": title_preds}
        return output_data

    return model_api


# config = Config()
# model  = NERModel(config)