--- base_model: zhihan1996/DNABERT-2-117M tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: DNABERT-2-117M_ft_BioS11_1kbpHG19_DHSs_H3K27AC results: [] --- # DNABERT-2-117M_ft_BioS11_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4939 - F1 Score: 0.7887 - Precision: 0.7763 - Recall: 0.8015 - Accuracy: 0.7733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.6014 | 1.1013 | 500 | 0.5175 | 0.7428 | 0.8134 | 0.6834 | 0.7501 | | 0.506 | 2.2026 | 1000 | 0.4939 | 0.7887 | 0.7763 | 0.8015 | 0.7733 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0