End of training
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: zhihan1996/DNABERT-2-117M
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: DNABERT-2-117M_ft_Hepg2_1kbpHG19_DHSs_H3K27AC
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# DNABERT-2-117M_ft_Hepg2_1kbpHG19_DHSs_H3K27AC
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4809
|
22 |
+
- F1 Score: 0.8080
|
23 |
+
- Precision: 0.7661
|
24 |
+
- Recall: 0.8546
|
25 |
+
- Accuracy: 0.7770
|
26 |
+
- Mcc Score: 0.5487
|
27 |
+
- Roc Auc Score: 0.7686
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 3
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Mcc Score | Roc Auc Score |
|
58 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:---------:|:-------------:|
|
59 |
+
| 0.4948 | 1.4881 | 500 | 0.5034 | 0.7825 | 0.7980 | 0.7677 | 0.7658 | 0.5296 | 0.7656 |
|
60 |
+
| 0.4623 | 2.9762 | 1000 | 0.4809 | 0.8080 | 0.7661 | 0.8546 | 0.7770 | 0.5487 | 0.7686 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.42.3
|
66 |
+
- Pytorch 2.3.0+cu121
|
67 |
+
- Datasets 2.18.0
|
68 |
+
- Tokenizers 0.19.0
|