--- license: apache-2.0 base_model: ctheodoris/Geneformer tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: Geneformer_ft_BioS73_1kbpHG19_DHSs_H3K27AC results: [] --- # Geneformer_ft_BioS73_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [ctheodoris/Geneformer](https://huggingface.co/ctheodoris/Geneformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5484 - F1 Score: 0.7419 - Precision: 0.7859 - Recall: 0.7025 - Accuracy: 0.7391 - Auc: 0.8188 - Prc: 0.8263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.6878 | 0.1864 | 500 | 0.6845 | 0.6851 | 0.5493 | 0.9099 | 0.5535 | 0.5520 | 0.5797 | | 0.6585 | 0.3727 | 1000 | 0.6392 | 0.6249 | 0.7056 | 0.5608 | 0.6407 | 0.6920 | 0.7149 | | 0.631 | 0.5591 | 1500 | 0.6069 | 0.6942 | 0.6901 | 0.6983 | 0.6716 | 0.7270 | 0.7461 | | 0.6114 | 0.7454 | 2000 | 0.5890 | 0.7411 | 0.6639 | 0.8387 | 0.6873 | 0.7600 | 0.7657 | | 0.5968 | 0.9318 | 2500 | 0.6026 | 0.7465 | 0.6453 | 0.8855 | 0.6791 | 0.7718 | 0.7718 | | 0.5747 | 1.1182 | 3000 | 0.5604 | 0.7434 | 0.7094 | 0.7807 | 0.7123 | 0.7836 | 0.7867 | | 0.5611 | 1.3045 | 3500 | 0.5515 | 0.7540 | 0.7296 | 0.7800 | 0.7283 | 0.7897 | 0.7912 | | 0.5666 | 1.4909 | 4000 | 0.5482 | 0.7523 | 0.7424 | 0.7626 | 0.7320 | 0.7932 | 0.7975 | | 0.5557 | 1.6772 | 4500 | 0.5394 | 0.7597 | 0.7313 | 0.7905 | 0.7331 | 0.8033 | 0.8049 | | 0.5563 | 1.8636 | 5000 | 0.5729 | 0.7647 | 0.6624 | 0.9043 | 0.7029 | 0.8028 | 0.8063 | | 0.5331 | 2.0499 | 5500 | 0.5457 | 0.7491 | 0.7719 | 0.7277 | 0.7398 | 0.8056 | 0.8123 | | 0.5292 | 2.2363 | 6000 | 0.5751 | 0.7681 | 0.6794 | 0.8834 | 0.7152 | 0.8017 | 0.8063 | | 0.5286 | 2.4227 | 6500 | 0.5377 | 0.7692 | 0.7213 | 0.8240 | 0.7361 | 0.8068 | 0.8115 | | 0.5397 | 2.6090 | 7000 | 0.5351 | 0.7549 | 0.7717 | 0.7388 | 0.7439 | 0.8115 | 0.8160 | | 0.5338 | 2.7954 | 7500 | 0.5346 | 0.7519 | 0.7860 | 0.7207 | 0.7462 | 0.8164 | 0.8190 | | 0.5181 | 2.9817 | 8000 | 0.5458 | 0.7790 | 0.7028 | 0.8736 | 0.7354 | 0.8184 | 0.8211 | | 0.5065 | 3.1681 | 8500 | 0.5379 | 0.7676 | 0.7393 | 0.7982 | 0.7421 | 0.8175 | 0.8242 | | 0.5028 | 3.3545 | 9000 | 0.5292 | 0.7744 | 0.7417 | 0.8101 | 0.7480 | 0.8209 | 0.8270 | | 0.5153 | 3.5408 | 9500 | 0.5484 | 0.7419 | 0.7859 | 0.7025 | 0.7391 | 0.8188 | 0.8263 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0