--- base_model: AIRI-Institute/gena-lm-bigbird-base-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bigbird-base-t2t_ft_BioS74_1kbpHG19_DHSs_H3K27AC results: [] --- # gena-lm-bigbird-base-t2t_ft_BioS74_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [AIRI-Institute/gena-lm-bigbird-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bigbird-base-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3903 - F1 Score: 0.8369 - Precision: 0.8479 - Recall: 0.8262 - Accuracy: 0.8314 - Auc: 0.9159 - Prc: 0.9150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5065 | 0.1314 | 500 | 0.4874 | 0.8094 | 0.8042 | 0.8147 | 0.7991 | 0.8745 | 0.8648 | | 0.4714 | 0.2629 | 1000 | 0.5169 | 0.7982 | 0.8196 | 0.7780 | 0.7941 | 0.8816 | 0.8741 | | 0.4608 | 0.3943 | 1500 | 0.4256 | 0.8224 | 0.8137 | 0.8312 | 0.8120 | 0.8906 | 0.8850 | | 0.4365 | 0.5258 | 2000 | 0.5043 | 0.8323 | 0.7431 | 0.9458 | 0.8004 | 0.8970 | 0.8898 | | 0.4181 | 0.6572 | 2500 | 0.4206 | 0.8438 | 0.7824 | 0.9156 | 0.8225 | 0.9004 | 0.8946 | | 0.4426 | 0.7886 | 3000 | 0.3973 | 0.8417 | 0.8253 | 0.8589 | 0.8309 | 0.9043 | 0.9005 | | 0.4192 | 0.9201 | 3500 | 0.4847 | 0.8416 | 0.8209 | 0.8634 | 0.8299 | 0.9065 | 0.9000 | | 0.4267 | 1.0515 | 4000 | 0.4880 | 0.8264 | 0.8417 | 0.8117 | 0.8215 | 0.9053 | 0.8978 | | 0.3992 | 1.1830 | 4500 | 0.3852 | 0.8443 | 0.8152 | 0.8754 | 0.8309 | 0.9103 | 0.9095 | | 0.3973 | 1.3144 | 5000 | 0.4035 | 0.8341 | 0.8335 | 0.8348 | 0.8262 | 0.9100 | 0.9086 | | 0.3861 | 1.4458 | 5500 | 0.4904 | 0.8187 | 0.8696 | 0.7735 | 0.8207 | 0.9114 | 0.9103 | | 0.3703 | 1.5773 | 6000 | 0.4456 | 0.8306 | 0.8466 | 0.8152 | 0.8259 | 0.9130 | 0.9100 | | 0.3964 | 1.7087 | 6500 | 0.3778 | 0.8371 | 0.8368 | 0.8373 | 0.8293 | 0.9143 | 0.9142 | | 0.3744 | 1.8402 | 7000 | 0.3903 | 0.8369 | 0.8479 | 0.8262 | 0.8314 | 0.9159 | 0.9150 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0