File size: 2,835 Bytes
010c149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: bsd-3-clause
base_model: LongSafari/hyenadna-medium-450k-seqlen-hf
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: hyenadna-medium-450k-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hyenadna-medium-450k-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of [LongSafari/hyenadna-medium-450k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4842
- F1 Score: 0.8087
- Precision: 0.7837
- Recall: 0.8355
- Accuracy: 0.7939
- Auc: 0.8682
- Prc: 0.8657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5149 | 0.4205 | 500 | 0.4843 | 0.8028 | 0.7336 | 0.8863 | 0.7728 | 0.8553 | 0.8481 |
| 0.4584 | 0.8410 | 1000 | 0.4805 | 0.8075 | 0.7280 | 0.9065 | 0.7745 | 0.8632 | 0.8518 |
| 0.4489 | 1.2616 | 1500 | 0.4646 | 0.8115 | 0.7566 | 0.875 | 0.7880 | 0.8676 | 0.8583 |
| 0.4367 | 1.6821 | 2000 | 0.4406 | 0.8133 | 0.7810 | 0.8484 | 0.7968 | 0.8720 | 0.8645 |
| 0.4138 | 2.1026 | 2500 | 0.4448 | 0.8189 | 0.7825 | 0.8589 | 0.8019 | 0.8732 | 0.8666 |
| 0.3859 | 2.5231 | 3000 | 0.4459 | 0.8010 | 0.8019 | 0.8 | 0.7926 | 0.8681 | 0.8619 |
| 0.4117 | 2.9437 | 3500 | 0.4532 | 0.8040 | 0.8024 | 0.8056 | 0.7951 | 0.8699 | 0.8678 |
| 0.3722 | 3.3642 | 4000 | 0.4556 | 0.7973 | 0.7969 | 0.7976 | 0.7884 | 0.8665 | 0.8668 |
| 0.3493 | 3.7847 | 4500 | 0.4849 | 0.7944 | 0.8121 | 0.7774 | 0.7901 | 0.8704 | 0.8684 |
| 0.313 | 4.2052 | 5000 | 0.4842 | 0.8087 | 0.7837 | 0.8355 | 0.7939 | 0.8682 | 0.8657 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
|