--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-500m-1000g tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-500m-1000g_ft_BioS73_1kbpHG19_DHSs_H3K27AC results: [] --- # nucleotide-transformer-500m-1000g_ft_BioS73_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-500m-1000g](https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-1000g) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7864 - F1 Score: 0.8674 - Precision: 0.8219 - Recall: 0.9183 - Accuracy: 0.8502 - Auc: 0.9181 - Prc: 0.9081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.4538 | 0.1864 | 500 | 0.5156 | 0.8245 | 0.7173 | 0.9693 | 0.7797 | 0.9012 | 0.8953 | | 0.4088 | 0.3727 | 1000 | 0.3942 | 0.8517 | 0.8082 | 0.9001 | 0.8327 | 0.9133 | 0.9102 | | 0.4018 | 0.5591 | 1500 | 0.3782 | 0.8518 | 0.8159 | 0.8911 | 0.8345 | 0.9127 | 0.9086 | | 0.4043 | 0.7454 | 2000 | 0.3631 | 0.8599 | 0.7934 | 0.9385 | 0.8367 | 0.9176 | 0.9111 | | 0.3866 | 0.9318 | 2500 | 0.4011 | 0.8586 | 0.7878 | 0.9434 | 0.8341 | 0.9161 | 0.9099 | | 0.332 | 1.1182 | 3000 | 0.4966 | 0.8603 | 0.8286 | 0.8946 | 0.8449 | 0.9211 | 0.9181 | | 0.2948 | 1.3045 | 3500 | 0.4844 | 0.8288 | 0.8643 | 0.7961 | 0.8245 | 0.9155 | 0.9026 | | 0.3062 | 1.4909 | 4000 | 0.4114 | 0.8449 | 0.8675 | 0.8233 | 0.8386 | 0.9223 | 0.9170 | | 0.2935 | 1.6772 | 4500 | 0.5448 | 0.8767 | 0.8346 | 0.9232 | 0.8613 | 0.9209 | 0.9102 | | 0.3113 | 1.8636 | 5000 | 0.4740 | 0.8561 | 0.8329 | 0.8806 | 0.8420 | 0.9200 | 0.9152 | | 0.2362 | 2.0499 | 5500 | 0.8302 | 0.8514 | 0.8544 | 0.8485 | 0.8420 | 0.9222 | 0.9178 | | 0.1752 | 2.2363 | 6000 | 0.8359 | 0.8681 | 0.8419 | 0.8959 | 0.8546 | 0.9189 | 0.9049 | | 0.1585 | 2.4227 | 6500 | 0.6381 | 0.8630 | 0.8150 | 0.9169 | 0.8446 | 0.9141 | 0.9058 | | 0.1535 | 2.6090 | 7000 | 0.7864 | 0.8674 | 0.8219 | 0.9183 | 0.8502 | 0.9181 | 0.9081 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0