File size: 3,213 Bytes
aeaa7ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-500m-human-ref
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-500m-human-ref_ft_BioS73_1kbpHG19_DHSs_H3K27AC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nucleotide-transformer-500m-human-ref_ft_BioS73_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-500m-human-ref](https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-human-ref) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8150
- F1 Score: 0.8285
- Precision: 0.8557
- Recall: 0.8031
- Accuracy: 0.8226
- Auc: 0.9169
- Prc: 0.9136
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.4538 | 0.1864 | 500 | 0.4571 | 0.8375 | 0.7486 | 0.9504 | 0.8032 | 0.9050 | 0.9000 |
| 0.3951 | 0.3727 | 1000 | 0.4439 | 0.8547 | 0.8010 | 0.9162 | 0.8338 | 0.9132 | 0.9091 |
| 0.4063 | 0.5591 | 1500 | 0.3878 | 0.8530 | 0.8158 | 0.8939 | 0.8356 | 0.9117 | 0.9071 |
| 0.394 | 0.7454 | 2000 | 0.3713 | 0.8551 | 0.7858 | 0.9378 | 0.8304 | 0.9156 | 0.9099 |
| 0.3825 | 0.9318 | 2500 | 0.4021 | 0.8542 | 0.7907 | 0.9288 | 0.8308 | 0.9162 | 0.9117 |
| 0.3348 | 1.1182 | 3000 | 0.6208 | 0.8383 | 0.8677 | 0.8108 | 0.8330 | 0.9181 | 0.9150 |
| 0.2861 | 1.3045 | 3500 | 0.4559 | 0.8629 | 0.8001 | 0.9365 | 0.8412 | 0.9109 | 0.8999 |
| 0.2899 | 1.4909 | 4000 | 0.4412 | 0.8418 | 0.8595 | 0.8247 | 0.8345 | 0.9147 | 0.9063 |
| 0.2739 | 1.6772 | 4500 | 0.5707 | 0.8607 | 0.7903 | 0.9448 | 0.8367 | 0.9168 | 0.9080 |
| 0.3108 | 1.8636 | 5000 | 0.5013 | 0.8642 | 0.8239 | 0.9085 | 0.8476 | 0.9189 | 0.9153 |
| 0.2194 | 2.0499 | 5500 | 0.8897 | 0.8630 | 0.8429 | 0.8841 | 0.8502 | 0.9205 | 0.9139 |
| 0.1629 | 2.2363 | 6000 | 0.9455 | 0.8631 | 0.8307 | 0.8980 | 0.8479 | 0.9162 | 0.9089 |
| 0.1826 | 2.4227 | 6500 | 0.8150 | 0.8285 | 0.8557 | 0.8031 | 0.8226 | 0.9169 | 0.9136 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
|