File size: 3,135 Bytes
8ba37ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-100m-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-v2-100m-multi-species_ft_BioS74_1kbpHG19_DHSs_H3K27AC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nucleotide-transformer-v2-100m-multi-species_ft_BioS74_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-100m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-100m-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4219
- F1 Score: 0.8409
- Precision: 0.8361
- Recall: 0.8458
- Accuracy: 0.8325
- Auc: 0.9111
- Prc: 0.9049
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5544 | 0.1314 | 500 | 0.5244 | 0.7566 | 0.7764 | 0.7378 | 0.7515 | 0.8400 | 0.8313 |
| 0.5015 | 0.2629 | 1000 | 0.4997 | 0.7709 | 0.824 | 0.7243 | 0.7747 | 0.8691 | 0.8632 |
| 0.4614 | 0.3943 | 1500 | 0.4311 | 0.8219 | 0.8011 | 0.8438 | 0.8086 | 0.8891 | 0.8855 |
| 0.4294 | 0.5258 | 2000 | 0.4329 | 0.8290 | 0.7769 | 0.8885 | 0.8080 | 0.8935 | 0.8874 |
| 0.4045 | 0.6572 | 2500 | 0.4249 | 0.8331 | 0.7673 | 0.9111 | 0.8088 | 0.8987 | 0.8937 |
| 0.432 | 0.7886 | 3000 | 0.4033 | 0.8261 | 0.8244 | 0.8277 | 0.8175 | 0.8993 | 0.8931 |
| 0.4148 | 0.9201 | 3500 | 0.4032 | 0.8381 | 0.8156 | 0.8619 | 0.8257 | 0.9057 | 0.8986 |
| 0.4127 | 1.0515 | 4000 | 0.4252 | 0.8196 | 0.8417 | 0.7986 | 0.8159 | 0.9026 | 0.8932 |
| 0.3807 | 1.1830 | 4500 | 0.3981 | 0.8441 | 0.8146 | 0.8759 | 0.8307 | 0.9046 | 0.8971 |
| 0.3711 | 1.3144 | 5000 | 0.4066 | 0.8430 | 0.8130 | 0.8754 | 0.8293 | 0.9011 | 0.8941 |
| 0.363 | 1.4458 | 5500 | 0.5295 | 0.8012 | 0.8737 | 0.7398 | 0.8078 | 0.9053 | 0.9037 |
| 0.3624 | 1.5773 | 6000 | 0.4219 | 0.8409 | 0.8361 | 0.8458 | 0.8325 | 0.9111 | 0.9049 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
|