--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-v2-250m-multi-species tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: nucleotide-transformer-v2-250m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC results: [] --- # nucleotide-transformer-v2-250m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-250m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-250m-multi-species) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4434 - F1 Score: 0.8539 - Precision: 0.8522 - Recall: 0.8556 - Accuracy: 0.8473 - Auc: 0.9230 - Prc: 0.9160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5396 | 0.2103 | 500 | 0.4921 | 0.7677 | 0.8407 | 0.7065 | 0.7770 | 0.8663 | 0.8653 | | 0.45 | 0.4207 | 1000 | 0.4548 | 0.8362 | 0.7580 | 0.9323 | 0.8094 | 0.9049 | 0.9023 | | 0.4027 | 0.6310 | 1500 | 0.4014 | 0.8472 | 0.7861 | 0.9185 | 0.8271 | 0.9120 | 0.9072 | | 0.3993 | 0.8414 | 2000 | 0.3715 | 0.8561 | 0.8487 | 0.8637 | 0.8485 | 0.9153 | 0.9089 | | 0.3709 | 1.0517 | 2500 | 0.4005 | 0.8647 | 0.8441 | 0.8863 | 0.8553 | 0.9232 | 0.9173 | | 0.3206 | 1.2621 | 3000 | 0.4735 | 0.8517 | 0.8355 | 0.8685 | 0.8422 | 0.9172 | 0.9132 | | 0.3259 | 1.4724 | 3500 | 0.4264 | 0.8612 | 0.8471 | 0.8758 | 0.8528 | 0.9234 | 0.9195 | | 0.316 | 1.6828 | 4000 | 0.4434 | 0.8539 | 0.8522 | 0.8556 | 0.8473 | 0.9230 | 0.9160 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0