File size: 2,623 Bytes
1f85140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-v1

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1673
- Rouge1: 74.1287
- Rouge2: 66.4339
- Rougel: 72.8596
- Rougelsum: 73.8679
- Gen Len: 16.3241

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 12.4521       | 0.85  | 200  | 0.2565          | 72.2564 | 62.6872 | 70.741  | 72.0604   | 15.9467 |
| 0.2538        | 1.7   | 400  | 0.1877          | 72.8835 | 64.0804 | 71.5277 | 72.642    | 16.3582 |
| 0.1804        | 2.55  | 600  | 0.1715          | 73.307  | 64.5027 | 72.2345 | 73.098    | 16.1429 |
| 0.1516        | 3.4   | 800  | 0.1675          | 73.9648 | 65.6244 | 72.8421 | 73.8516   | 16.2026 |
| 0.1331        | 4.26  | 1000 | 0.1609          | 73.7382 | 65.6094 | 72.5124 | 73.5658   | 16.3198 |
| 0.1205        | 5.11  | 1200 | 0.1656          | 74.2505 | 66.5083 | 73.1059 | 74.0956   | 16.3795 |
| 0.1113        | 5.96  | 1400 | 0.1593          | 74.2997 | 66.2497 | 73.2158 | 74.1265   | 16.3326 |
| 0.1031        | 6.81  | 1600 | 0.1643          | 74.2861 | 66.3972 | 73.1252 | 74.0796   | 16.2729 |
| 0.0909        | 7.66  | 1800 | 0.1638          | 73.7071 | 65.61   | 72.4082 | 73.5071   | 16.3262 |
| 0.0876        | 8.51  | 2000 | 0.1667          | 74.1477 | 66.0628 | 72.9115 | 73.9177   | 16.3198 |
| 0.0911        | 9.36  | 2200 | 0.1673          | 74.1287 | 66.4339 | 72.8596 | 73.8679   | 16.3241 |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3