--- language: - ar license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - taqwa92/tm_data metrics: - wer model-index: - name: Whisper Small Arabic- Taqwa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: tm_data type: taqwa92/tm_data config: default split: test[:5%] args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 45.63719862227325 --- # Whisper Small Arabic- Taqwa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the tm_data dataset. It achieves the following results on the evaluation set: - Loss: 0.5530 - Wer: 45.6372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1812 | 5.0 | 500 | 0.5530 | 45.6372 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2