Commit
·
f487d06
1
Parent(s):
b23f247
Upload 4 files
Browse filesAdded main files
- Iris.csv +151 -0
- README.md +25 -0
- finalized_model.sav +0 -0
- model.ipynb +379 -0
Iris.csv
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
|
2 |
+
1,5.1,3.5,1.4,0.2,Iris-setosa
|
3 |
+
2,4.9,3.0,1.4,0.2,Iris-setosa
|
4 |
+
3,4.7,3.2,1.3,0.2,Iris-setosa
|
5 |
+
4,4.6,3.1,1.5,0.2,Iris-setosa
|
6 |
+
5,5.0,3.6,1.4,0.2,Iris-setosa
|
7 |
+
6,5.4,3.9,1.7,0.4,Iris-setosa
|
8 |
+
7,4.6,3.4,1.4,0.3,Iris-setosa
|
9 |
+
8,5.0,3.4,1.5,0.2,Iris-setosa
|
10 |
+
9,4.4,2.9,1.4,0.2,Iris-setosa
|
11 |
+
10,4.9,3.1,1.5,0.1,Iris-setosa
|
12 |
+
11,5.4,3.7,1.5,0.2,Iris-setosa
|
13 |
+
12,4.8,3.4,1.6,0.2,Iris-setosa
|
14 |
+
13,4.8,3.0,1.4,0.1,Iris-setosa
|
15 |
+
14,4.3,3.0,1.1,0.1,Iris-setosa
|
16 |
+
15,5.8,4.0,1.2,0.2,Iris-setosa
|
17 |
+
16,5.7,4.4,1.5,0.4,Iris-setosa
|
18 |
+
17,5.4,3.9,1.3,0.4,Iris-setosa
|
19 |
+
18,5.1,3.5,1.4,0.3,Iris-setosa
|
20 |
+
19,5.7,3.8,1.7,0.3,Iris-setosa
|
21 |
+
20,5.1,3.8,1.5,0.3,Iris-setosa
|
22 |
+
21,5.4,3.4,1.7,0.2,Iris-setosa
|
23 |
+
22,5.1,3.7,1.5,0.4,Iris-setosa
|
24 |
+
23,4.6,3.6,1.0,0.2,Iris-setosa
|
25 |
+
24,5.1,3.3,1.7,0.5,Iris-setosa
|
26 |
+
25,4.8,3.4,1.9,0.2,Iris-setosa
|
27 |
+
26,5.0,3.0,1.6,0.2,Iris-setosa
|
28 |
+
27,5.0,3.4,1.6,0.4,Iris-setosa
|
29 |
+
28,5.2,3.5,1.5,0.2,Iris-setosa
|
30 |
+
29,5.2,3.4,1.4,0.2,Iris-setosa
|
31 |
+
30,4.7,3.2,1.6,0.2,Iris-setosa
|
32 |
+
31,4.8,3.1,1.6,0.2,Iris-setosa
|
33 |
+
32,5.4,3.4,1.5,0.4,Iris-setosa
|
34 |
+
33,5.2,4.1,1.5,0.1,Iris-setosa
|
35 |
+
34,5.5,4.2,1.4,0.2,Iris-setosa
|
36 |
+
35,4.9,3.1,1.5,0.1,Iris-setosa
|
37 |
+
36,5.0,3.2,1.2,0.2,Iris-setosa
|
38 |
+
37,5.5,3.5,1.3,0.2,Iris-setosa
|
39 |
+
38,4.9,3.1,1.5,0.1,Iris-setosa
|
40 |
+
39,4.4,3.0,1.3,0.2,Iris-setosa
|
41 |
+
40,5.1,3.4,1.5,0.2,Iris-setosa
|
42 |
+
41,5.0,3.5,1.3,0.3,Iris-setosa
|
43 |
+
42,4.5,2.3,1.3,0.3,Iris-setosa
|
44 |
+
43,4.4,3.2,1.3,0.2,Iris-setosa
|
45 |
+
44,5.0,3.5,1.6,0.6,Iris-setosa
|
46 |
+
45,5.1,3.8,1.9,0.4,Iris-setosa
|
47 |
+
46,4.8,3.0,1.4,0.3,Iris-setosa
|
48 |
+
47,5.1,3.8,1.6,0.2,Iris-setosa
|
49 |
+
48,4.6,3.2,1.4,0.2,Iris-setosa
|
50 |
+
49,5.3,3.7,1.5,0.2,Iris-setosa
|
51 |
+
50,5.0,3.3,1.4,0.2,Iris-setosa
|
52 |
+
51,7.0,3.2,4.7,1.4,Iris-versicolor
|
53 |
+
52,6.4,3.2,4.5,1.5,Iris-versicolor
|
54 |
+
53,6.9,3.1,4.9,1.5,Iris-versicolor
|
55 |
+
54,5.5,2.3,4.0,1.3,Iris-versicolor
|
56 |
+
55,6.5,2.8,4.6,1.5,Iris-versicolor
|
57 |
+
56,5.7,2.8,4.5,1.3,Iris-versicolor
|
58 |
+
57,6.3,3.3,4.7,1.6,Iris-versicolor
|
59 |
+
58,4.9,2.4,3.3,1.0,Iris-versicolor
|
60 |
+
59,6.6,2.9,4.6,1.3,Iris-versicolor
|
61 |
+
60,5.2,2.7,3.9,1.4,Iris-versicolor
|
62 |
+
61,5.0,2.0,3.5,1.0,Iris-versicolor
|
63 |
+
62,5.9,3.0,4.2,1.5,Iris-versicolor
|
64 |
+
63,6.0,2.2,4.0,1.0,Iris-versicolor
|
65 |
+
64,6.1,2.9,4.7,1.4,Iris-versicolor
|
66 |
+
65,5.6,2.9,3.6,1.3,Iris-versicolor
|
67 |
+
66,6.7,3.1,4.4,1.4,Iris-versicolor
|
68 |
+
67,5.6,3.0,4.5,1.5,Iris-versicolor
|
69 |
+
68,5.8,2.7,4.1,1.0,Iris-versicolor
|
70 |
+
69,6.2,2.2,4.5,1.5,Iris-versicolor
|
71 |
+
70,5.6,2.5,3.9,1.1,Iris-versicolor
|
72 |
+
71,5.9,3.2,4.8,1.8,Iris-versicolor
|
73 |
+
72,6.1,2.8,4.0,1.3,Iris-versicolor
|
74 |
+
73,6.3,2.5,4.9,1.5,Iris-versicolor
|
75 |
+
74,6.1,2.8,4.7,1.2,Iris-versicolor
|
76 |
+
75,6.4,2.9,4.3,1.3,Iris-versicolor
|
77 |
+
76,6.6,3.0,4.4,1.4,Iris-versicolor
|
78 |
+
77,6.8,2.8,4.8,1.4,Iris-versicolor
|
79 |
+
78,6.7,3.0,5.0,1.7,Iris-versicolor
|
80 |
+
79,6.0,2.9,4.5,1.5,Iris-versicolor
|
81 |
+
80,5.7,2.6,3.5,1.0,Iris-versicolor
|
82 |
+
81,5.5,2.4,3.8,1.1,Iris-versicolor
|
83 |
+
82,5.5,2.4,3.7,1.0,Iris-versicolor
|
84 |
+
83,5.8,2.7,3.9,1.2,Iris-versicolor
|
85 |
+
84,6.0,2.7,5.1,1.6,Iris-versicolor
|
86 |
+
85,5.4,3.0,4.5,1.5,Iris-versicolor
|
87 |
+
86,6.0,3.4,4.5,1.6,Iris-versicolor
|
88 |
+
87,6.7,3.1,4.7,1.5,Iris-versicolor
|
89 |
+
88,6.3,2.3,4.4,1.3,Iris-versicolor
|
90 |
+
89,5.6,3.0,4.1,1.3,Iris-versicolor
|
91 |
+
90,5.5,2.5,4.0,1.3,Iris-versicolor
|
92 |
+
91,5.5,2.6,4.4,1.2,Iris-versicolor
|
93 |
+
92,6.1,3.0,4.6,1.4,Iris-versicolor
|
94 |
+
93,5.8,2.6,4.0,1.2,Iris-versicolor
|
95 |
+
94,5.0,2.3,3.3,1.0,Iris-versicolor
|
96 |
+
95,5.6,2.7,4.2,1.3,Iris-versicolor
|
97 |
+
96,5.7,3.0,4.2,1.2,Iris-versicolor
|
98 |
+
97,5.7,2.9,4.2,1.3,Iris-versicolor
|
99 |
+
98,6.2,2.9,4.3,1.3,Iris-versicolor
|
100 |
+
99,5.1,2.5,3.0,1.1,Iris-versicolor
|
101 |
+
100,5.7,2.8,4.1,1.3,Iris-versicolor
|
102 |
+
101,6.3,3.3,6.0,2.5,Iris-virginica
|
103 |
+
102,5.8,2.7,5.1,1.9,Iris-virginica
|
104 |
+
103,7.1,3.0,5.9,2.1,Iris-virginica
|
105 |
+
104,6.3,2.9,5.6,1.8,Iris-virginica
|
106 |
+
105,6.5,3.0,5.8,2.2,Iris-virginica
|
107 |
+
106,7.6,3.0,6.6,2.1,Iris-virginica
|
108 |
+
107,4.9,2.5,4.5,1.7,Iris-virginica
|
109 |
+
108,7.3,2.9,6.3,1.8,Iris-virginica
|
110 |
+
109,6.7,2.5,5.8,1.8,Iris-virginica
|
111 |
+
110,7.2,3.6,6.1,2.5,Iris-virginica
|
112 |
+
111,6.5,3.2,5.1,2.0,Iris-virginica
|
113 |
+
112,6.4,2.7,5.3,1.9,Iris-virginica
|
114 |
+
113,6.8,3.0,5.5,2.1,Iris-virginica
|
115 |
+
114,5.7,2.5,5.0,2.0,Iris-virginica
|
116 |
+
115,5.8,2.8,5.1,2.4,Iris-virginica
|
117 |
+
116,6.4,3.2,5.3,2.3,Iris-virginica
|
118 |
+
117,6.5,3.0,5.5,1.8,Iris-virginica
|
119 |
+
118,7.7,3.8,6.7,2.2,Iris-virginica
|
120 |
+
119,7.7,2.6,6.9,2.3,Iris-virginica
|
121 |
+
120,6.0,2.2,5.0,1.5,Iris-virginica
|
122 |
+
121,6.9,3.2,5.7,2.3,Iris-virginica
|
123 |
+
122,5.6,2.8,4.9,2.0,Iris-virginica
|
124 |
+
123,7.7,2.8,6.7,2.0,Iris-virginica
|
125 |
+
124,6.3,2.7,4.9,1.8,Iris-virginica
|
126 |
+
125,6.7,3.3,5.7,2.1,Iris-virginica
|
127 |
+
126,7.2,3.2,6.0,1.8,Iris-virginica
|
128 |
+
127,6.2,2.8,4.8,1.8,Iris-virginica
|
129 |
+
128,6.1,3.0,4.9,1.8,Iris-virginica
|
130 |
+
129,6.4,2.8,5.6,2.1,Iris-virginica
|
131 |
+
130,7.2,3.0,5.8,1.6,Iris-virginica
|
132 |
+
131,7.4,2.8,6.1,1.9,Iris-virginica
|
133 |
+
132,7.9,3.8,6.4,2.0,Iris-virginica
|
134 |
+
133,6.4,2.8,5.6,2.2,Iris-virginica
|
135 |
+
134,6.3,2.8,5.1,1.5,Iris-virginica
|
136 |
+
135,6.1,2.6,5.6,1.4,Iris-virginica
|
137 |
+
136,7.7,3.0,6.1,2.3,Iris-virginica
|
138 |
+
137,6.3,3.4,5.6,2.4,Iris-virginica
|
139 |
+
138,6.4,3.1,5.5,1.8,Iris-virginica
|
140 |
+
139,6.0,3.0,4.8,1.8,Iris-virginica
|
141 |
+
140,6.9,3.1,5.4,2.1,Iris-virginica
|
142 |
+
141,6.7,3.1,5.6,2.4,Iris-virginica
|
143 |
+
142,6.9,3.1,5.1,2.3,Iris-virginica
|
144 |
+
143,5.8,2.7,5.1,1.9,Iris-virginica
|
145 |
+
144,6.8,3.2,5.9,2.3,Iris-virginica
|
146 |
+
145,6.7,3.3,5.7,2.5,Iris-virginica
|
147 |
+
146,6.7,3.0,5.2,2.3,Iris-virginica
|
148 |
+
147,6.3,2.5,5.0,1.9,Iris-virginica
|
149 |
+
148,6.5,3.0,5.2,2.0,Iris-virginica
|
150 |
+
149,6.2,3.4,5.4,2.3,Iris-virginica
|
151 |
+
150,5.9,3.0,5.1,1.8,Iris-virginica
|
README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Internship appplication task
|
2 |
+
Position: ML Open Source Engineer Internship - skops: Hugging Face and scikit-learn
|
3 |
+
|
4 |
+
## Task requirments
|
5 |
+
1. Create a python environment and install `scikit-learn` version `1.0` in that environment.
|
6 |
+
2. Using that environment, create a `LogisticRegression` model and fit it on the Iris dataset.
|
7 |
+
3. Save the trained model using `pickle` or `joblib`.
|
8 |
+
4. Create a second environment, and install `scikit-learn` version `1.1` in it.
|
9 |
+
5. Try loading the model you saved in step 3 in this second environment.
|
10 |
+
|
11 |
+
|
12 |
+
## Steps Taken
|
13 |
+
1. I used mamba to create the environment locally.
|
14 |
+
2. Trained a simple logistic regression model in `model.ipynb`.
|
15 |
+
3. Used pickle to save the model in `finalized_model.sav`.
|
16 |
+
4. Created another environment with `scikit-learn` version `1.1`.
|
17 |
+
5. Imported the model in `importingmodel.ipynb`.
|
18 |
+
|
19 |
+
## Observations
|
20 |
+
A warning is shown when trying to load the model.
|
21 |
+
```
|
22 |
+
/home/tarek/.local/lib/python3.8/site-packages/sklearn/base.py:329: UserWarning: Trying to unpickle estimator LogisticRegression from version 1.0.2 when using version 1.1.0. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
|
23 |
+
https://scikit-learn.org/stable/modules/model_persistence.html#security-maintainability-limitations
|
24 |
+
warnings.warn(
|
25 |
+
```
|
finalized_model.sav
ADDED
Binary file (969 Bytes). View file
|
|
model.ipynb
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "14741086",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"sklearn version: 1.0.2\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"import numpy as np\n",
|
19 |
+
"import pandas as pd\n",
|
20 |
+
"import matplotlib.pyplot as plt\n",
|
21 |
+
"import sklearn\n",
|
22 |
+
"print(\"sklearn version: \" + sklearn.__version__)\n",
|
23 |
+
"\n",
|
24 |
+
"from sklearn.model_selection import train_test_split\n",
|
25 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
26 |
+
"from sklearn import metrics\n",
|
27 |
+
"import pickle"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "96b17451",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"df = pd.read_csv('Iris.csv')"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 3,
|
43 |
+
"id": "cefb0143",
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"data": {
|
48 |
+
"text/html": [
|
49 |
+
"<div>\n",
|
50 |
+
"<style scoped>\n",
|
51 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
52 |
+
" vertical-align: middle;\n",
|
53 |
+
" }\n",
|
54 |
+
"\n",
|
55 |
+
" .dataframe tbody tr th {\n",
|
56 |
+
" vertical-align: top;\n",
|
57 |
+
" }\n",
|
58 |
+
"\n",
|
59 |
+
" .dataframe thead th {\n",
|
60 |
+
" text-align: right;\n",
|
61 |
+
" }\n",
|
62 |
+
"</style>\n",
|
63 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
64 |
+
" <thead>\n",
|
65 |
+
" <tr style=\"text-align: right;\">\n",
|
66 |
+
" <th></th>\n",
|
67 |
+
" <th>Id</th>\n",
|
68 |
+
" <th>SepalLengthCm</th>\n",
|
69 |
+
" <th>SepalWidthCm</th>\n",
|
70 |
+
" <th>PetalLengthCm</th>\n",
|
71 |
+
" <th>PetalWidthCm</th>\n",
|
72 |
+
" <th>Species</th>\n",
|
73 |
+
" </tr>\n",
|
74 |
+
" </thead>\n",
|
75 |
+
" <tbody>\n",
|
76 |
+
" <tr>\n",
|
77 |
+
" <th>0</th>\n",
|
78 |
+
" <td>1</td>\n",
|
79 |
+
" <td>5.1</td>\n",
|
80 |
+
" <td>3.5</td>\n",
|
81 |
+
" <td>1.4</td>\n",
|
82 |
+
" <td>0.2</td>\n",
|
83 |
+
" <td>Iris-setosa</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <th>1</th>\n",
|
87 |
+
" <td>2</td>\n",
|
88 |
+
" <td>4.9</td>\n",
|
89 |
+
" <td>3.0</td>\n",
|
90 |
+
" <td>1.4</td>\n",
|
91 |
+
" <td>0.2</td>\n",
|
92 |
+
" <td>Iris-setosa</td>\n",
|
93 |
+
" </tr>\n",
|
94 |
+
" <tr>\n",
|
95 |
+
" <th>2</th>\n",
|
96 |
+
" <td>3</td>\n",
|
97 |
+
" <td>4.7</td>\n",
|
98 |
+
" <td>3.2</td>\n",
|
99 |
+
" <td>1.3</td>\n",
|
100 |
+
" <td>0.2</td>\n",
|
101 |
+
" <td>Iris-setosa</td>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" <tr>\n",
|
104 |
+
" <th>3</th>\n",
|
105 |
+
" <td>4</td>\n",
|
106 |
+
" <td>4.6</td>\n",
|
107 |
+
" <td>3.1</td>\n",
|
108 |
+
" <td>1.5</td>\n",
|
109 |
+
" <td>0.2</td>\n",
|
110 |
+
" <td>Iris-setosa</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>4</th>\n",
|
114 |
+
" <td>5</td>\n",
|
115 |
+
" <td>5.0</td>\n",
|
116 |
+
" <td>3.6</td>\n",
|
117 |
+
" <td>1.4</td>\n",
|
118 |
+
" <td>0.2</td>\n",
|
119 |
+
" <td>Iris-setosa</td>\n",
|
120 |
+
" </tr>\n",
|
121 |
+
" </tbody>\n",
|
122 |
+
"</table>\n",
|
123 |
+
"</div>"
|
124 |
+
],
|
125 |
+
"text/plain": [
|
126 |
+
" Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species\n",
|
127 |
+
"0 1 5.1 3.5 1.4 0.2 Iris-setosa\n",
|
128 |
+
"1 2 4.9 3.0 1.4 0.2 Iris-setosa\n",
|
129 |
+
"2 3 4.7 3.2 1.3 0.2 Iris-setosa\n",
|
130 |
+
"3 4 4.6 3.1 1.5 0.2 Iris-setosa\n",
|
131 |
+
"4 5 5.0 3.6 1.4 0.2 Iris-setosa"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
"execution_count": 3,
|
135 |
+
"metadata": {},
|
136 |
+
"output_type": "execute_result"
|
137 |
+
}
|
138 |
+
],
|
139 |
+
"source": [
|
140 |
+
"df.head()"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 4,
|
146 |
+
"id": "f3c67f44",
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [
|
149 |
+
{
|
150 |
+
"name": "stdout",
|
151 |
+
"output_type": "stream",
|
152 |
+
"text": [
|
153 |
+
"Shape of dataset: (150, 6)\n"
|
154 |
+
]
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"source": [
|
158 |
+
"print(f\"Shape of dataset: {df.shape}\")"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 5,
|
164 |
+
"id": "60e037d4",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"data": {
|
169 |
+
"text/html": [
|
170 |
+
"<div>\n",
|
171 |
+
"<style scoped>\n",
|
172 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
173 |
+
" vertical-align: middle;\n",
|
174 |
+
" }\n",
|
175 |
+
"\n",
|
176 |
+
" .dataframe tbody tr th {\n",
|
177 |
+
" vertical-align: top;\n",
|
178 |
+
" }\n",
|
179 |
+
"\n",
|
180 |
+
" .dataframe thead th {\n",
|
181 |
+
" text-align: right;\n",
|
182 |
+
" }\n",
|
183 |
+
"</style>\n",
|
184 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
185 |
+
" <thead>\n",
|
186 |
+
" <tr style=\"text-align: right;\">\n",
|
187 |
+
" <th></th>\n",
|
188 |
+
" <th>count</th>\n",
|
189 |
+
" <th>mean</th>\n",
|
190 |
+
" <th>std</th>\n",
|
191 |
+
" <th>min</th>\n",
|
192 |
+
" <th>25%</th>\n",
|
193 |
+
" <th>50%</th>\n",
|
194 |
+
" <th>75%</th>\n",
|
195 |
+
" <th>max</th>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" </thead>\n",
|
198 |
+
" <tbody>\n",
|
199 |
+
" <tr>\n",
|
200 |
+
" <th>Id</th>\n",
|
201 |
+
" <td>150.0</td>\n",
|
202 |
+
" <td>75.500000</td>\n",
|
203 |
+
" <td>43.445368</td>\n",
|
204 |
+
" <td>1.0</td>\n",
|
205 |
+
" <td>38.25</td>\n",
|
206 |
+
" <td>75.50</td>\n",
|
207 |
+
" <td>112.75</td>\n",
|
208 |
+
" <td>150.0</td>\n",
|
209 |
+
" </tr>\n",
|
210 |
+
" <tr>\n",
|
211 |
+
" <th>SepalLengthCm</th>\n",
|
212 |
+
" <td>150.0</td>\n",
|
213 |
+
" <td>5.843333</td>\n",
|
214 |
+
" <td>0.828066</td>\n",
|
215 |
+
" <td>4.3</td>\n",
|
216 |
+
" <td>5.10</td>\n",
|
217 |
+
" <td>5.80</td>\n",
|
218 |
+
" <td>6.40</td>\n",
|
219 |
+
" <td>7.9</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>SepalWidthCm</th>\n",
|
223 |
+
" <td>150.0</td>\n",
|
224 |
+
" <td>3.054000</td>\n",
|
225 |
+
" <td>0.433594</td>\n",
|
226 |
+
" <td>2.0</td>\n",
|
227 |
+
" <td>2.80</td>\n",
|
228 |
+
" <td>3.00</td>\n",
|
229 |
+
" <td>3.30</td>\n",
|
230 |
+
" <td>4.4</td>\n",
|
231 |
+
" </tr>\n",
|
232 |
+
" <tr>\n",
|
233 |
+
" <th>PetalLengthCm</th>\n",
|
234 |
+
" <td>150.0</td>\n",
|
235 |
+
" <td>3.758667</td>\n",
|
236 |
+
" <td>1.764420</td>\n",
|
237 |
+
" <td>1.0</td>\n",
|
238 |
+
" <td>1.60</td>\n",
|
239 |
+
" <td>4.35</td>\n",
|
240 |
+
" <td>5.10</td>\n",
|
241 |
+
" <td>6.9</td>\n",
|
242 |
+
" </tr>\n",
|
243 |
+
" <tr>\n",
|
244 |
+
" <th>PetalWidthCm</th>\n",
|
245 |
+
" <td>150.0</td>\n",
|
246 |
+
" <td>1.198667</td>\n",
|
247 |
+
" <td>0.763161</td>\n",
|
248 |
+
" <td>0.1</td>\n",
|
249 |
+
" <td>0.30</td>\n",
|
250 |
+
" <td>1.30</td>\n",
|
251 |
+
" <td>1.80</td>\n",
|
252 |
+
" <td>2.5</td>\n",
|
253 |
+
" </tr>\n",
|
254 |
+
" </tbody>\n",
|
255 |
+
"</table>\n",
|
256 |
+
"</div>"
|
257 |
+
],
|
258 |
+
"text/plain": [
|
259 |
+
" count mean std min 25% 50% 75% max\n",
|
260 |
+
"Id 150.0 75.500000 43.445368 1.0 38.25 75.50 112.75 150.0\n",
|
261 |
+
"SepalLengthCm 150.0 5.843333 0.828066 4.3 5.10 5.80 6.40 7.9\n",
|
262 |
+
"SepalWidthCm 150.0 3.054000 0.433594 2.0 2.80 3.00 3.30 4.4\n",
|
263 |
+
"PetalLengthCm 150.0 3.758667 1.764420 1.0 1.60 4.35 5.10 6.9\n",
|
264 |
+
"PetalWidthCm 150.0 1.198667 0.763161 0.1 0.30 1.30 1.80 2.5"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"execution_count": 5,
|
268 |
+
"metadata": {},
|
269 |
+
"output_type": "execute_result"
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"df.describe().T"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 6,
|
279 |
+
"id": "60f28e3c",
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [
|
282 |
+
{
|
283 |
+
"name": "stdout",
|
284 |
+
"output_type": "stream",
|
285 |
+
"text": [
|
286 |
+
"(150, 4)\n",
|
287 |
+
"(150,)\n"
|
288 |
+
]
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"source": [
|
292 |
+
"X = df.drop(['Id', 'Species'], axis=1)\n",
|
293 |
+
"y = df['Species']\n",
|
294 |
+
"# print(X.head())\n",
|
295 |
+
"print(X.shape)\n",
|
296 |
+
"# print(y.head())\n",
|
297 |
+
"print(y.shape)"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "code",
|
302 |
+
"execution_count": 7,
|
303 |
+
"id": "d76a6b95",
|
304 |
+
"metadata": {},
|
305 |
+
"outputs": [
|
306 |
+
{
|
307 |
+
"name": "stdout",
|
308 |
+
"output_type": "stream",
|
309 |
+
"text": [
|
310 |
+
"(90, 4)\n",
|
311 |
+
"(90,)\n",
|
312 |
+
"(60, 4)\n",
|
313 |
+
"(60,)\n"
|
314 |
+
]
|
315 |
+
}
|
316 |
+
],
|
317 |
+
"source": [
|
318 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)\n",
|
319 |
+
"print(X_train.shape)\n",
|
320 |
+
"print(y_train.shape)\n",
|
321 |
+
"print(X_test.shape)\n",
|
322 |
+
"print(y_test.shape)"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": 8,
|
328 |
+
"id": "b1da053e",
|
329 |
+
"metadata": {},
|
330 |
+
"outputs": [
|
331 |
+
{
|
332 |
+
"name": "stdout",
|
333 |
+
"output_type": "stream",
|
334 |
+
"text": [
|
335 |
+
"0.9833333333333333\n"
|
336 |
+
]
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"logreg = LogisticRegression()\n",
|
341 |
+
"logreg.fit(X_train, y_train)\n",
|
342 |
+
"y_pred = logreg.predict(X_test)\n",
|
343 |
+
"print(metrics.accuracy_score(y_test, y_pred))"
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"cell_type": "code",
|
348 |
+
"execution_count": 9,
|
349 |
+
"id": "2d47b3df",
|
350 |
+
"metadata": {},
|
351 |
+
"outputs": [],
|
352 |
+
"source": [
|
353 |
+
"filename = 'finalized_model.sav'\n",
|
354 |
+
"pickle.dump(logreg, open(filename, 'wb'))"
|
355 |
+
]
|
356 |
+
}
|
357 |
+
],
|
358 |
+
"metadata": {
|
359 |
+
"kernelspec": {
|
360 |
+
"display_name": "Python 3 (ipykernel)",
|
361 |
+
"language": "python",
|
362 |
+
"name": "python3"
|
363 |
+
},
|
364 |
+
"language_info": {
|
365 |
+
"codemirror_mode": {
|
366 |
+
"name": "ipython",
|
367 |
+
"version": 3
|
368 |
+
},
|
369 |
+
"file_extension": ".py",
|
370 |
+
"mimetype": "text/x-python",
|
371 |
+
"name": "python",
|
372 |
+
"nbconvert_exporter": "python",
|
373 |
+
"pygments_lexer": "ipython3",
|
374 |
+
"version": "3.8.10"
|
375 |
+
}
|
376 |
+
},
|
377 |
+
"nbformat": 4,
|
378 |
+
"nbformat_minor": 5
|
379 |
+
}
|