File size: 1,416 Bytes
d850aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from tokenizers import Tokenizer
from tokenizers.models import BPE
from transformers import PreTrainedTokenizerFast
class gLM2Tokenizer(PreTrainedTokenizerFast):
VOCAB = [
"<cls>", "<pad>", "<eos>", "<unk>",
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
"O", "a", "t", "c", "g", "<+>", "<->", "<mask>", "<sep>",
]
def __init__(
self,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
sep_token="<sep>",
pos_token="<+>",
neg_token="<->",
**kwargs,
):
all_tokens = self.VOCAB
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
bpe = BPE(token_to_id, merges=[], unk_token=str(unk_token))
tokenizer = Tokenizer(bpe)
special_tokens = [cls_token, pad_token,
mask_token, eos_token, sep_token, pos_token, neg_token]
tokenizer.add_special_tokens(
special_tokens,
)
super().__init__(
tokenizer_object=tokenizer,
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
sep_token=sep_token,
**kwargs,
)
|