andrecornman
commited on
Update modeling_glm2.py
Browse files- modeling_glm2.py +99 -197
modeling_glm2.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
"""PyTorch gLM2 model.
|
2 |
|
3 |
-
Requires flash attention.
|
4 |
Some modules adapted from:
|
5 |
https://github.com/meta-llama/llama/blob/main/llama/model.py
|
6 |
"""
|
7 |
-
|
8 |
import torch
|
9 |
-
from einops import rearrange
|
10 |
from typing import Optional, Tuple, Union
|
11 |
from torch import nn
|
12 |
from torch.nn import CrossEntropyLoss
|
@@ -17,30 +16,51 @@ from transformers.modeling_outputs import (
|
|
17 |
)
|
18 |
from transformers.modeling_utils import PreTrainedModel
|
19 |
from transformers.utils import logging
|
|
|
20 |
|
21 |
-
|
22 |
-
from flash_attn.ops.activations import swiglu
|
23 |
-
from flash_attn.layers.rotary import apply_rotary_emb_func
|
24 |
-
from flash_attn import (
|
25 |
-
flash_attn_kvpacked_func,
|
26 |
-
flash_attn_varlen_kvpacked_func,
|
27 |
-
)
|
28 |
-
from flash_attn.bert_padding import pad_input, unpad_input
|
29 |
-
from flash_attn.ops.triton.layer_norm import RMSNorm
|
30 |
-
except ImportError:
|
31 |
-
raise ImportError(
|
32 |
-
"gLM2 requires flash attention: `pip install flash-attn --no-build-isolation`")
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
class RotaryEmbedding(torch.nn.Module):
|
41 |
"""
|
42 |
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
43 |
-
Changed to
|
44 |
"""
|
45 |
|
46 |
def __init__(
|
@@ -138,92 +158,52 @@ class RotaryEmbedding(torch.nn.Module):
|
|
138 |
|
139 |
def forward(
|
140 |
self,
|
141 |
-
|
142 |
-
k: torch.Tensor,
|
143 |
-
seqlen_offset: Union[int, torch.Tensor] = 0,
|
144 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
145 |
max_seqlen: Optional[int] = None,
|
146 |
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
147 |
"""
|
148 |
-
|
149 |
-
shape (total_seqlen, nheads, headdim).
|
150 |
-
k: (batch, seqlen, nheads, headdim). If cu_seqlens is not None,
|
151 |
-
shape (total_seqlen, nheads, headdim).
|
152 |
-
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
153 |
-
Most commonly used in inference when we have KV cache.
|
154 |
-
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
155 |
-
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
156 |
-
Apply rotary embedding *inplace* to qkv and / or kv.
|
157 |
"""
|
158 |
-
|
159 |
-
|
160 |
-
seqlen = q.shape[1] if max_seqlen is None else max_seqlen
|
161 |
-
if max_seqlen is not None:
|
162 |
self._update_cos_sin_cache(
|
163 |
-
|
164 |
-
elif
|
165 |
self._update_cos_sin_cache(
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
q,
|
170 |
-
self._cos_cached,
|
171 |
-
self._sin_cached,
|
172 |
-
interleaved=self.interleaved,
|
173 |
-
inplace=True,
|
174 |
-
seqlen_offsets=seqlen_offset,
|
175 |
-
cu_seqlens=cu_seqlens,
|
176 |
-
max_seqlen=max_seqlen,
|
177 |
)
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
self._sin_cached,
|
183 |
-
interleaved=self.interleaved,
|
184 |
-
inplace=True,
|
185 |
-
seqlen_offsets=seqlen_offset,
|
186 |
-
cu_seqlens=cu_seqlens,
|
187 |
-
max_seqlen=max_seqlen,
|
188 |
-
)
|
189 |
-
else:
|
190 |
-
k = apply_rotary_emb_func(
|
191 |
-
k,
|
192 |
-
self._cos_k_cached,
|
193 |
-
self._sin_k_cached,
|
194 |
-
interleaved=self.interleaved,
|
195 |
-
inplace=True,
|
196 |
-
seqlen_offsets=seqlen_offset,
|
197 |
-
cu_seqlens=cu_seqlens,
|
198 |
-
max_seqlen=max_seqlen,
|
199 |
-
)
|
200 |
-
return q, k
|
201 |
|
202 |
|
203 |
# @torch.jit.script
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
|
212 |
|
213 |
-
|
214 |
-
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
|
225 |
-
|
226 |
-
|
227 |
|
228 |
|
229 |
class Attention(nn.Module):
|
@@ -241,67 +221,33 @@ class Attention(nn.Module):
|
|
241 |
|
242 |
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
243 |
|
244 |
-
def _forward_varlen(
|
245 |
-
self,
|
246 |
-
x: torch.Tensor,
|
247 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
248 |
-
max_seq_len: Optional[torch.Tensor] = None,
|
249 |
-
) -> torch.Tensor:
|
250 |
-
total_seqlen, h_size = x.shape
|
251 |
-
qkv = self.wqkv(x)
|
252 |
-
q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1)
|
253 |
-
|
254 |
-
q = q.view(total_seqlen, self.n_heads, self.head_dim)
|
255 |
-
k = k.view(total_seqlen, self.n_heads, self.head_dim)
|
256 |
-
v = v.view(total_seqlen, self.n_heads, self.head_dim)
|
257 |
-
|
258 |
-
q, k = self.rotary_emb(
|
259 |
-
q, k, cu_seqlens=cu_seqlens, max_seqlen=max_seq_len)
|
260 |
-
|
261 |
-
# (seqlen, 2, n_heads, head_dim)
|
262 |
-
kv = torch.stack([k, v], 1)
|
263 |
-
|
264 |
-
# (seqlen, n_heads, head_dim)
|
265 |
-
output = flash_attn_varlen_kvpacked_func(
|
266 |
-
q,
|
267 |
-
kv,
|
268 |
-
cu_seqlens_q=cu_seqlens,
|
269 |
-
cu_seqlens_k=cu_seqlens,
|
270 |
-
max_seqlen_q=max_seq_len,
|
271 |
-
max_seqlen_k=max_seq_len,
|
272 |
-
dropout_p=0.0,
|
273 |
-
causal=False,
|
274 |
-
)
|
275 |
-
output = output.view(total_seqlen, h_size)
|
276 |
-
return self.wo(output)
|
277 |
-
|
278 |
def forward(
|
279 |
self,
|
280 |
x: torch.Tensor,
|
281 |
-
|
282 |
-
max_seq_len: Optional[torch.Tensor] = None,
|
283 |
) -> torch.Tensor:
|
284 |
-
if cu_seqlens is not None:
|
285 |
-
assert max_seq_len is not None
|
286 |
-
return self._forward_varlen(x, cu_seqlens, max_seq_len)
|
287 |
-
|
288 |
bsz, seqlen, h_size = x.shape
|
289 |
qkv = self.wqkv(x)
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
304 |
)
|
|
|
|
|
305 |
output = output.view(bsz, seqlen, h_size)
|
306 |
return self.wo(output)
|
307 |
|
@@ -336,7 +282,7 @@ class FeedForward(nn.Module):
|
|
336 |
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
337 |
|
338 |
def forward(self, x):
|
339 |
-
return self.w2(
|
340 |
|
341 |
|
342 |
class TransformerBlock(nn.Module):
|
@@ -358,12 +304,10 @@ class TransformerBlock(nn.Module):
|
|
358 |
def forward(
|
359 |
self,
|
360 |
x: torch.Tensor,
|
361 |
-
|
362 |
-
max_seq_len: Optional[torch.Tensor] = None,
|
363 |
) -> torch.Tensor:
|
364 |
-
r = self.attention(
|
365 |
-
|
366 |
-
)
|
367 |
h = x + r
|
368 |
r = self.feed_forward(self.ffn_norm(h))
|
369 |
out = h + r
|
@@ -377,19 +321,6 @@ class TransformerLayers(nn.Module):
|
|
377 |
self.layers = torch.nn.ModuleList(
|
378 |
[TransformerBlock(config=config) for _ in range(config.depth)]
|
379 |
)
|
380 |
-
self.apply(self._init_weights)
|
381 |
-
# Apply special scaled init to the residual projections, per GPT-2 paper.
|
382 |
-
# Weight w2 is output of FeedForward. Weight wo is output of Attention.
|
383 |
-
for pn, p in self.named_parameters():
|
384 |
-
if pn.endswith('w2.weight') or pn.endswith('wo.weight'):
|
385 |
-
torch.nn.init.normal_(
|
386 |
-
p, mean=0.0, std=0.02/math.sqrt(2 * self.config.depth))
|
387 |
-
|
388 |
-
def _init_weights(self, module):
|
389 |
-
if isinstance(module, nn.Linear):
|
390 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
391 |
-
if module.bias is not None:
|
392 |
-
torch.nn.init.zeros_(module.bias)
|
393 |
|
394 |
def forward(
|
395 |
self,
|
@@ -401,26 +332,12 @@ class TransformerLayers(nn.Module):
|
|
401 |
raise ValueError(
|
402 |
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}"
|
403 |
)
|
404 |
-
batch_size, seq_len = x.shape[:2]
|
405 |
-
should_unpad = attention_mask is not None and not attention_mask.all()
|
406 |
-
if should_unpad:
|
407 |
-
x, indices, cu_seqlens, max_seq_len_in_batch = unpad_input(
|
408 |
-
x, attention_mask
|
409 |
-
)
|
410 |
-
else:
|
411 |
-
indices, cu_seqlens, max_seq_len_in_batch = None, None, None
|
412 |
hiddens = []
|
413 |
for layer in self.layers:
|
414 |
-
x = layer(x,
|
415 |
if return_all_hiddens:
|
416 |
hiddens.append(x)
|
417 |
|
418 |
-
if should_unpad:
|
419 |
-
x = pad_input(x, indices, batch_size, seq_len)
|
420 |
-
if return_all_hiddens:
|
421 |
-
hiddens = [pad_input(h, indices, batch_size, seq_len)
|
422 |
-
for h in hiddens]
|
423 |
-
|
424 |
if return_all_hiddens:
|
425 |
return x, hiddens
|
426 |
return x
|
@@ -455,16 +372,9 @@ class gLM2Model(gLM2PreTrainedModel):
|
|
455 |
self.config = config
|
456 |
|
457 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
458 |
-
self._init_weights(self.tok_embeddings)
|
459 |
self.encoder = TransformerLayers(config)
|
460 |
-
|
461 |
-
|
462 |
-
if isinstance(module, nn.Linear):
|
463 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
464 |
-
if module.bias is not None:
|
465 |
-
torch.nn.init.zeros_(module.bias)
|
466 |
-
elif isinstance(module, nn.Embedding):
|
467 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
468 |
|
469 |
def forward(
|
470 |
self,
|
@@ -556,15 +466,7 @@ class gLM2ForMaskedLM(gLM2PreTrainedModel):
|
|
556 |
|
557 |
self.glm2 = gLM2Model(config)
|
558 |
self.lm_head = gLM2LMHead(config)
|
559 |
-
self.
|
560 |
-
|
561 |
-
def _init_weights(self, module):
|
562 |
-
if isinstance(module, nn.Linear):
|
563 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
564 |
-
if module.bias is not None:
|
565 |
-
torch.nn.init.zeros_(module.bias)
|
566 |
-
elif isinstance(module, nn.Embedding):
|
567 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
568 |
|
569 |
def forward(
|
570 |
self,
|
@@ -616,4 +518,4 @@ class gLM2LMHead(nn.Module):
|
|
616 |
config.dim, config.vocab_size, bias=False)
|
617 |
|
618 |
def forward(self, features):
|
619 |
-
return self.proj_output(self.norm(features))
|
|
|
1 |
"""PyTorch gLM2 model.
|
2 |
|
|
|
3 |
Some modules adapted from:
|
4 |
https://github.com/meta-llama/llama/blob/main/llama/model.py
|
5 |
"""
|
6 |
+
|
7 |
import torch
|
8 |
+
from einops import rearrange, repeat
|
9 |
from typing import Optional, Tuple, Union
|
10 |
from torch import nn
|
11 |
from torch.nn import CrossEntropyLoss
|
|
|
16 |
)
|
17 |
from transformers.modeling_utils import PreTrainedModel
|
18 |
from transformers.utils import logging
|
19 |
+
from .configuration_glm2 import gLM2Config, gLM2EmbedConfig
|
20 |
|
21 |
+
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
|
24 |
+
def rotate_half(x, interleaved=False):
|
25 |
+
if not interleaved:
|
26 |
+
x1, x2 = x.chunk(2, dim=-1)
|
27 |
+
return torch.cat((-x2, x1), dim=-1)
|
28 |
+
else:
|
29 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
30 |
+
return rearrange(
|
31 |
+
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
32 |
+
)
|
33 |
|
34 |
|
35 |
+
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
36 |
+
"""
|
37 |
+
x: (batch_size, seqlen, nheads, headdim)
|
38 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
39 |
+
"""
|
40 |
+
ro_dim = cos.shape[-1] * 2
|
41 |
+
assert ro_dim <= x.shape[-1]
|
42 |
+
seqlen = x.shape[1]
|
43 |
+
cos, sin = cos[:seqlen], sin[:seqlen]
|
44 |
+
cos = repeat(
|
45 |
+
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
46 |
+
)
|
47 |
+
sin = repeat(
|
48 |
+
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
49 |
+
)
|
50 |
+
return torch.cat(
|
51 |
+
[
|
52 |
+
x[..., :ro_dim] * cos +
|
53 |
+
rotate_half(x[..., :ro_dim], interleaved) * sin,
|
54 |
+
x[..., ro_dim:],
|
55 |
+
],
|
56 |
+
dim=-1,
|
57 |
+
)
|
58 |
|
59 |
|
60 |
class RotaryEmbedding(torch.nn.Module):
|
61 |
"""
|
62 |
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
63 |
+
Changed to use the torch version of apply_rotary_emb_func.
|
64 |
"""
|
65 |
|
66 |
def __init__(
|
|
|
158 |
|
159 |
def forward(
|
160 |
self,
|
161 |
+
qkv: torch.Tensor,
|
|
|
|
|
|
|
162 |
max_seqlen: Optional[int] = None,
|
163 |
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
164 |
"""
|
165 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
"""
|
167 |
+
seqlen = qkv.shape[1]
|
168 |
+
if seqlen > self._seq_len_cached:
|
|
|
|
|
169 |
self._update_cos_sin_cache(
|
170 |
+
seqlen, device=qkv.device, dtype=qkv.dtype)
|
171 |
+
elif max_seqlen is not None:
|
172 |
self._update_cos_sin_cache(
|
173 |
+
max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
174 |
+
q_rot = apply_rotary_emb_torch(
|
175 |
+
qkv[:, :, 0], self._cos_cached, self._sin_cached, self.interleaved
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
)
|
177 |
+
k_rot = apply_rotary_emb_torch(
|
178 |
+
qkv[:, :, 1], self._cos_cached, self._sin_cached, self.interleaved
|
179 |
+
)
|
180 |
+
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
|
183 |
# @torch.jit.script
|
184 |
+
def rmsnorm_func(hidden_states, weight, variance_epsilon):
|
185 |
+
"""Apply the root mean square normalization."""
|
186 |
+
input_dtype = hidden_states.dtype
|
187 |
+
hidden_states = hidden_states.to(torch.float32)
|
188 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
189 |
+
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
|
190 |
+
return (weight * hidden_states).to(input_dtype)
|
191 |
|
192 |
|
193 |
+
class RMSNorm(nn.Module):
|
194 |
+
"""Root mean square normalization."""
|
195 |
|
196 |
+
def __init__(self, dim, eps=1e-6):
|
197 |
+
super().__init__()
|
198 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
199 |
+
self.register_buffer(
|
200 |
+
"variance_epsilon",
|
201 |
+
torch.tensor(eps),
|
202 |
+
persistent=False,
|
203 |
+
)
|
204 |
|
205 |
+
def forward(self, hidden_states):
|
206 |
+
return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
|
207 |
|
208 |
|
209 |
class Attention(nn.Module):
|
|
|
221 |
|
222 |
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
def forward(
|
225 |
self,
|
226 |
x: torch.Tensor,
|
227 |
+
attention_mask: Optional[torch.Tensor] = None,
|
|
|
228 |
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
229 |
bsz, seqlen, h_size = x.shape
|
230 |
qkv = self.wqkv(x)
|
231 |
+
|
232 |
+
qkv = qkv.view(bsz, seqlen, 3, self.n_heads, self.head_dim)
|
233 |
+
qkv = self.rotary_emb(qkv)
|
234 |
+
|
235 |
+
# (batch, nheads, 3, seqlen, headdim)
|
236 |
+
qkv = torch.transpose(qkv, 3, 1)
|
237 |
+
q = qkv[:, :, 0]
|
238 |
+
k = qkv[:, :, 1]
|
239 |
+
v = qkv[:, :, 2]
|
240 |
+
if attention_mask is not None:
|
241 |
+
attention_mask = attention_mask[:, None, None, :]
|
242 |
+
attention_mask = attention_mask.expand(
|
243 |
+
bsz, self.n_heads, seqlen, seqlen
|
244 |
+
).bool()
|
245 |
+
# [B, heads, seq, D]
|
246 |
+
output = torch.nn.functional.scaled_dot_product_attention(
|
247 |
+
q, k, v, attn_mask=attention_mask
|
248 |
)
|
249 |
+
output = output.permute(0, 2, 1, 3).contiguous()
|
250 |
+
|
251 |
output = output.view(bsz, seqlen, h_size)
|
252 |
return self.wo(output)
|
253 |
|
|
|
282 |
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
283 |
|
284 |
def forward(self, x):
|
285 |
+
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
|
286 |
|
287 |
|
288 |
class TransformerBlock(nn.Module):
|
|
|
304 |
def forward(
|
305 |
self,
|
306 |
x: torch.Tensor,
|
307 |
+
attention_mask: Optional[torch.Tensor] = None,
|
|
|
308 |
) -> torch.Tensor:
|
309 |
+
r = self.attention(self.attention_norm(
|
310 |
+
x), attention_mask=attention_mask)
|
|
|
311 |
h = x + r
|
312 |
r = self.feed_forward(self.ffn_norm(h))
|
313 |
out = h + r
|
|
|
321 |
self.layers = torch.nn.ModuleList(
|
322 |
[TransformerBlock(config=config) for _ in range(config.depth)]
|
323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
def forward(
|
326 |
self,
|
|
|
332 |
raise ValueError(
|
333 |
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}"
|
334 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
hiddens = []
|
336 |
for layer in self.layers:
|
337 |
+
x = layer(x, attention_mask=attention_mask)
|
338 |
if return_all_hiddens:
|
339 |
hiddens.append(x)
|
340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
if return_all_hiddens:
|
342 |
return x, hiddens
|
343 |
return x
|
|
|
372 |
self.config = config
|
373 |
|
374 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
|
|
375 |
self.encoder = TransformerLayers(config)
|
376 |
+
# Initialize weights and apply final processing
|
377 |
+
self.post_init()
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
def forward(
|
380 |
self,
|
|
|
466 |
|
467 |
self.glm2 = gLM2Model(config)
|
468 |
self.lm_head = gLM2LMHead(config)
|
469 |
+
self.init_weights()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
def forward(
|
472 |
self,
|
|
|
518 |
config.dim, config.vocab_size, bias=False)
|
519 |
|
520 |
def forward(self, features):
|
521 |
+
return self.proj_output(self.norm(features))
|