"""gLM2 model configuration""" from typing import Optional from transformers import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class gLM2Config(PretrainedConfig): model_type = "gLM2" def __init__( self, dim: int = 640, depth: int = 30, heads: int = 10, vocab_size: int = 37, swiglu_multiple_of: int = 256, ffn_dim_multiplier: Optional[float] = None, norm_eps: float = 1e-5, **kwargs ): super().__init__(**kwargs) self.dim = dim self.depth = depth self.heads = heads self.vocab_size = vocab_size self.swiglu_multiple_of = swiglu_multiple_of self.ffn_dim_multiplier = ffn_dim_multiplier self.norm_eps = norm_eps self.auto_map = { "AutoConfig": "configuration_glm2.gLM2Config", "AutoModel": "modeling_glm2.gLM2Model", "AutoModelForMaskedLM": "modeling_glm2.gLM2ForMaskedLM" } class gLM2EmbedConfig(gLM2Config): model_type = "gLM2Embed" def __init__(self, projection_dim: int = 512, **kwargs): super().__init__(**kwargs) self.projection_dim = projection_dim self.auto_map = { "AutoConfig": "configuration_glm2.gLM2EmbedConfig", "AutoModel": "modeling_glm2.gLM2ForEmbedding", }