"""PyTorch gLM2 model. Requires flash attention. Some modules adapted from: https://github.com/meta-llama/llama/blob/main/llama/model.py """ import math import torch from einops import rearrange from typing import Optional, Tuple, Union from torch import nn from torch.nn import CrossEntropyLoss from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging try: from flash_attn.ops.activations import swiglu from flash_attn.layers.rotary import apply_rotary_emb_func from flash_attn import ( flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func, ) from flash_attn.bert_padding import pad_input, unpad_input from flash_attn.ops.triton.layer_norm import RMSNorm except ImportError: raise ImportError( "gLM2 requires flash attention: `pip install flash-attn --no-build-isolation`") from .configuration_glm2 import gLM2Config, gLM2EmbedConfig logger = logging.get_logger(__name__) class RotaryEmbedding(torch.nn.Module): """ Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py. Changed to only support passing in q or k individually, so that we can use varlen rotary. """ def __init__( self, dim: int, base=10000.0, interleaved=False, scale_base=None, pos_idx_in_fp32=True, device=None, ): super().__init__() self.dim = dim self.base = float(base) self.pos_idx_in_fp32 = pos_idx_in_fp32 # Generate and save the inverse frequency buffer (non trainable) inv_freq = self._compute_inv_freq(device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.interleaved = interleaved self.scale_base = scale_base scale = ( (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base is not None else None ) self.register_buffer("scale", scale, persistent=False) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None def _compute_inv_freq(self, device=None): return 1.0 / ( self.base ** ( torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim ) ) def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): # Reset the tables if the sequence length has changed, # if we're on a new device (possibly due to tracing for instance), # or if we're switching from inference mode to training if ( seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype or (self.training and self._cos_cached.is_inference()) ): self._seq_len_cached = seqlen # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16 # And the output of arange can be quite large, so bf16 would lose a lot of precision. # However, for compatibility reason, we add an option to use the dtype of self.inv_freq. if self.pos_idx_in_fp32: t = torch.arange(seqlen, device=device, dtype=torch.float32) # We want fp32 here as well since inv_freq will be multiplied with t, and the output # will be large. Having it in bf16 will lose a lot of precision and cause the # cos & sin output to change significantly. # We want to recompute self.inv_freq if it was not loaded in fp32 if self.inv_freq.dtype != torch.float32: inv_freq = self._compute_inv_freq(device=device) else: inv_freq = self.inv_freq else: t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) inv_freq = self.inv_freq # Don't do einsum, it converts fp32 to fp16 under AMP # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, inv_freq) if self.scale is None: self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) else: power = ( torch.arange( seqlen, dtype=self.scale.dtype, device=self.scale.device ) - seqlen // 2 ) / self.scale_base scale = self.scale.to(device=power.device) ** rearrange( power, "s -> s 1" ) # We want the multiplication by scale to happen in fp32 self._cos_cached = (torch.cos(freqs) * scale).to(dtype) self._sin_cached = (torch.sin(freqs) * scale).to(dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) def forward( self, q: torch.Tensor, k: torch.Tensor, seqlen_offset: Union[int, torch.Tensor] = 0, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ q: (batch, seqlen, nheads, headdim). If cu_seqlens is not None, shape (total_seqlen, nheads, headdim). k: (batch, seqlen, nheads, headdim). If cu_seqlens is not None, shape (total_seqlen, nheads, headdim). seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount. Most commonly used in inference when we have KV cache. If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one should pass in max_seqlen, which will update the cos / sin cache up to that length. Apply rotary embedding *inplace* to qkv and / or kv. """ if cu_seqlens is not None: assert max_seqlen is not None seqlen = q.shape[1] if max_seqlen is None else max_seqlen if max_seqlen is not None: self._update_cos_sin_cache( max_seqlen, device=q.device, dtype=q.dtype) elif isinstance(seqlen_offset, int): self._update_cos_sin_cache( seqlen + seqlen_offset, device=q.device, dtype=q.dtype ) q = apply_rotary_emb_func( q, self._cos_cached, self._sin_cached, interleaved=self.interleaved, inplace=True, seqlen_offsets=seqlen_offset, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) if self.scale is None: k = apply_rotary_emb_func( k, self._cos_cached, self._sin_cached, interleaved=self.interleaved, inplace=True, seqlen_offsets=seqlen_offset, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) else: k = apply_rotary_emb_func( k, self._cos_k_cached, self._sin_k_cached, interleaved=self.interleaved, inplace=True, seqlen_offsets=seqlen_offset, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) return q, k # @torch.jit.script # def rmsnorm_func(hidden_states, weight, variance_epsilon): # """Apply the root mean square normalization.""" # input_dtype = hidden_states.dtype # hidden_states = hidden_states.to(torch.float32) # variance = hidden_states.pow(2).mean(-1, keepdim=True) # hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon) # return (weight * hidden_states).to(input_dtype) # class RMSNorm(nn.Module): # """Root mean square normalization.""" # def __init__(self, dim, eps=1e-6): # super().__init__() # self.weight = nn.Parameter(torch.ones(dim)) # self.register_buffer( # "variance_epsilon", # torch.tensor(eps), # persistent=False, # ) # def forward(self, hidden_states): # return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon) class Attention(nn.Module): """Multi-head attention module.""" def __init__(self, config: gLM2Config): super().__init__() self.n_heads = config.heads self.head_dim = config.dim // config.heads self.wqkv = nn.Linear(config.dim, self.n_heads * self.head_dim * 3, bias=False) self.wo = nn.Linear(config.heads * self.head_dim, config.dim, bias=False) self.rotary_emb = RotaryEmbedding(self.head_dim) def _forward_varlen( self, x: torch.Tensor, cu_seqlens: Optional[torch.Tensor] = None, max_seq_len: Optional[torch.Tensor] = None, ) -> torch.Tensor: total_seqlen, h_size = x.shape qkv = self.wqkv(x) q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1) q = q.view(total_seqlen, self.n_heads, self.head_dim) k = k.view(total_seqlen, self.n_heads, self.head_dim) v = v.view(total_seqlen, self.n_heads, self.head_dim) q, k = self.rotary_emb( q, k, cu_seqlens=cu_seqlens, max_seqlen=max_seq_len) # (seqlen, 2, n_heads, head_dim) kv = torch.stack([k, v], 1) # (seqlen, n_heads, head_dim) output = flash_attn_varlen_kvpacked_func( q, kv, cu_seqlens_q=cu_seqlens, cu_seqlens_k=cu_seqlens, max_seqlen_q=max_seq_len, max_seqlen_k=max_seq_len, dropout_p=0.0, causal=False, ) output = output.view(total_seqlen, h_size) return self.wo(output) def forward( self, x: torch.Tensor, cu_seqlens: Optional[torch.Tensor] = None, max_seq_len: Optional[torch.Tensor] = None, ) -> torch.Tensor: if cu_seqlens is not None: assert max_seq_len is not None return self._forward_varlen(x, cu_seqlens, max_seq_len) bsz, seqlen, h_size = x.shape qkv = self.wqkv(x) q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1) q = q.view(bsz, seqlen, self.n_heads, self.head_dim) k = k.view(bsz, seqlen, self.n_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_heads, self.head_dim) q, k = self.rotary_emb(q, k) # (bs, seqlen, 2, n_heads, head_dim) kv = torch.stack([k, v], 2) output = flash_attn_kvpacked_func( q, kv, dropout_p=0.0, causal=False, ) output = output.view(bsz, seqlen, h_size) return self.wo(output) class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float], ): """ SwiGLU FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * \ ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear(dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim, bias=False) def forward(self, x): return self.w2(swiglu(self.w1(x), self.w3(x))) class TransformerBlock(nn.Module): def __init__(self, config: gLM2Config): super().__init__() self.n_heads = config.heads self.dim = config.dim self.head_dim = config.dim // config.heads self.attention = Attention(config) self.feed_forward = FeedForward( dim=config.dim, hidden_dim=4 * config.dim, multiple_of=config.swiglu_multiple_of, ffn_dim_multiplier=config.ffn_dim_multiplier, ) self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) def forward( self, x: torch.Tensor, cu_seqlens: Optional[torch.Tensor] = None, max_seq_len: Optional[torch.Tensor] = None, ) -> torch.Tensor: r = self.attention( self.attention_norm(x), cu_seqlens, max_seq_len ) h = x + r r = self.feed_forward(self.ffn_norm(h)) out = h + r return out class TransformerLayers(nn.Module): def __init__(self, config: gLM2Config): super().__init__() self.config = config self.layers = torch.nn.ModuleList( [TransformerBlock(config=config) for _ in range(config.depth)] ) self.apply(self._init_weights) # Apply special scaled init to the residual projections, per GPT-2 paper. # Weight w2 is output of FeedForward. Weight wo is output of Attention. for pn, p in self.named_parameters(): if pn.endswith('w2.weight') or pn.endswith('wo.weight'): torch.nn.init.normal_( p, mean=0.0, std=0.02/math.sqrt(2 * self.config.depth)) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) def forward( self, x: torch.FloatTensor, attention_mask: Optional[torch.BoolTensor] = None, return_all_hiddens: bool = False, ): if x.shape[-1] != self.config.dim: raise ValueError( f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}" ) batch_size, seq_len = x.shape[:2] should_unpad = attention_mask is not None and not attention_mask.all() if should_unpad: x, indices, cu_seqlens, max_seq_len_in_batch = unpad_input( x, attention_mask ) else: indices, cu_seqlens, max_seq_len_in_batch = None, None, None hiddens = [] for layer in self.layers: x = layer(x, cu_seqlens, max_seq_len_in_batch) if return_all_hiddens: hiddens.append(x) if should_unpad: x = pad_input(x, indices, batch_size, seq_len) if return_all_hiddens: hiddens = [pad_input(h, indices, batch_size, seq_len) for h in hiddens] if return_all_hiddens: return x, hiddens return x class gLM2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = gLM2Config base_model_prefix = "glm2" supports_gradient_checkpointing = False # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class gLM2Model(gLM2PreTrainedModel): """gLM2 Model.""" def __init__(self, config: gLM2Config): super().__init__(config) self.config = config self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self._init_weights(self.tok_embeddings) self.encoder = TransformerLayers(config) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict h = self.tok_embeddings(input_ids) if output_hidden_states: sequence_output, all_hidden_states = self.encoder( h, attention_mask, return_all_hiddens=True) else: sequence_output = self.encoder(h, attention_mask) all_hidden_states = None if not return_dict: return (sequence_output, all_hidden_states) return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=all_hidden_states, ) class MeanPooling(nn.Module): def __init__(self): super().__init__() def forward(self, embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): """Applies mean pooling. Args: embeds: [..., seq_len, hidden_dim]. attention_mask: [..., seq_len]. Returns: Outputs of shape [..., hidden_dim]. """ if attention_mask is None: return torch.mean(embeds, dim=-2) mask = attention_mask.bool().unsqueeze(-1) embeds = torch.where(mask, embeds, 0.0) embeds = torch.sum(embeds, -2) embeds /= torch.clamp(torch.sum(mask, dim=-2, dtype=embeds.dtype), min=1.0) return embeds class gLM2ForEmbedding(gLM2PreTrainedModel): """gLM2 Embedding Model.""" config_class = gLM2EmbedConfig def __init__(self, config: gLM2EmbedConfig): super().__init__(config) self.glm2 = gLM2Model(config) self.pool = MeanPooling() self.projection = nn.Linear(config.dim, config.projection_dim, bias=False) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: hidden_states = self.glm2( input_ids, attention_mask=attention_mask, output_hidden_states=False, return_dict=True, ).last_hidden_state embeds = self.pool(hidden_states, attention_mask) embeds = self.projection(embeds) return BaseModelOutputWithPooling( pooler_output=embeds, ) class gLM2ForMaskedLM(gLM2PreTrainedModel): def __init__(self, config: gLM2Config): super().__init__(config) self.glm2 = gLM2Model(config) self.lm_head = gLM2LMHead(config) self._init_weights(self.lm_head) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.glm2( input_ids, attention_mask=attention_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(prediction_scores.device) masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class gLM2LMHead(nn.Module): """gLM2 head for masked language modeling.""" def __init__(self, config): super().__init__() self.norm = RMSNorm(config.dim, eps=config.norm_eps) self.proj_output = nn.Linear( config.dim, config.vocab_size, bias=False) def forward(self, features): return self.proj_output(self.norm(features))