Adding my trained model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 248.84 +/- 20.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c9a3ea5c3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c9a3ea5c430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c9a3ea5c4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c9a3ea5c550>", "_build": "<function ActorCriticPolicy._build at 0x7c9a3ea5c5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7c9a3ea5c670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c9a3ea5c700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c9a3ea5c790>", "_predict": "<function ActorCriticPolicy._predict at 0x7c9a3ea5c820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c9a3ea5c8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9a3ea5c940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c9a3ea5c9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c9a3ea1d900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735019998610758247, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN5Jr3sRZ86YpU4OzcKkT0FafS6kZ8RPAAAgD8AAIA/8+3AvdmTdj7LGcO9518TvrQV4rxFGam9AAAAAAAAAAAAttO87Nz9u+WBi71GTws9WaBXPb5S5L0AAIA/AACAP9qkiz0puFc7cS8cPPAxUjyulDW7MUypPAAAAAAAAAAAMyMhvQpnPbkKCr46mvr+NOxaWLvugOC5AACAPwAAgD+aQYQ8uAajuSoYBr0Fy2Y8sWD5O+b+ST0AAIA/AACAPzMynbwpwCa6TgKKN2AgCLJqosi7g0ajtgAAgD8AAIA/TclsvtMXbT9HvCU9+TSwvmFoi74r01U+AAAAAAAAAACGETY+rDfzPqo0z71iGJy+5TCwPRKXy70AAAAAAAAAAM02Lb0Urqe6OxiWucbaXDhpIG67sGShOAAAgD8AAIA/ZoLFPPO1UT/smUo91P/GvnkDnzxAdNm7AAAAAAAAAACtJpW++ZNaP1Zkhb2pza++z2irvjO3Hj4AAAAAAAAAAJqROrzhpJe61zwzOuIwmzjL16G6PX3HuAAAgD8AAIA/M0bNvamYSD/ugxO9zGW4vgiwXb0w0Js7AAAAAAAAAAAdSoo+JixDP5omzb2hdba+YvOIPoIk2b0AAAAAAAAAADOzZrlIUYI5ae6Xuu4ToLvSLRy7w2mMvAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAujc/MW46MAWyUTQYBjAF0lEdAlGLdMbm2cHV9lChoBkdAcAoP1tfoimgHTQkBaAhHQJRjGq+8Gs51fZQoaAZHQHJUrypaRp1oB00KAWgIR0CUZQdc0LtvdX2UKGgGR0Bu6nxDst03aAdNLwFoCEdAlGgftdAxBXV9lChoBkdAcCtG8274BWgHTTgBaAhHQJRolaiblRx1fZQoaAZHQCjmAd4mkWRoB0vpaAhHQJRo9E2HclB1fZQoaAZHQG5Y5dWyTpxoB00QAWgIR0CUaSNo8IRidX2UKGgGR0Buu4GY8dPtaAdNOgFoCEdAlGmEwevIO3V9lChoBkdAcol8XenAI2gHTTcBaAhHQJRphfD1oQF1fZQoaAZHQHNH8lLOAy5oB01cAWgIR0CUalx0uDjBdX2UKGgGR0BwxUk0Jng6aAdNQQFoCEdAlGpfPC2tuHV9lChoBkdAcSg6nzg/DGgHTQYBaAhHQJRq2TyJ9Ap1fZQoaAZHQHBV3xBmf5FoB00rAWgIR0CUfP40Mw10dX2UKGgGR0BwVgPEsJ6ZaAdNQQFoCEdAlH4VhCtzS3V9lChoBkdAcKtM9bHIZWgHTTUBaAhHQJR+tiYsunN1fZQoaAZHQG2mJKSPluFoB00eAWgIR0CUf7iMYMvzdX2UKGgGR0BxEfgzguRLaAdNKAFoCEdAlIAqKUFB6nV9lChoBkdAcP5s4ku6E2gHTT0BaAhHQJSBE+iaiK11fZQoaAZHQHCXKB7NSqFoB00dAWgIR0CUgXSmZVn3dX2UKGgGR0BQb49gWrOraAdL6mgIR0CUgmaB7NSqdX2UKGgGR0ByTUK4QSSNaAdNFAFoCEdAlIOp/5LytnV9lChoBkdAbZzx82JizGgHTRgBaAhHQJSEbMX7+DR1fZQoaAZHQHC/P+n62v1oB00RAWgIR0CUha5eqrBCdX2UKGgGR0Bwx/EzfrKOaAdNLwFoCEdAlIXcaS9ug3V9lChoBkdAb7D6FdszmGgHTTUBaAhHQJSGGM98qnZ1fZQoaAZHQHCa5b6guh9oB01lAWgIR0CUhp7yhBZ7dX2UKGgGR0Bu0W+K0lZ6aAdNLgFoCEdAlIdan752yXV9lChoBkdAcNcBun/DL2gHTSQBaAhHQJSHwGiYb851fZQoaAZHQHEdBDst03hoB01PAWgIR0CUh/sCT2WZdX2UKGgGR0BxaylwcYIjaAdNDQFoCEdAlIinSOR1YHV9lChoBkdAcGtuuzQeFWgHTUkBaAhHQJSKC9mHxjJ1fZQoaAZHQHG3+GsV+JBoB00nAWgIR0CUiwUpuuRtdX2UKGgGR0Byv1rzoUzsaAdNHgFoCEdAlIwPDYRNAXV9lChoBkdAbJGdtEXtSmgHTVEBaAhHQJSMHsByS3d1fZQoaAZHQHEW8mOU+s5oB01IAWgIR0CUjTtb9qDcdX2UKGgGR0BxOPI7vG6xaAdNNAFoCEdAlI31ndweeXV9lChoBkdAcCs9S/CZW2gHTSABaAhHQJSPOOp84Px1fZQoaAZHQEgZ3yI55qxoB0vqaAhHQJSQ4MDwH7h1fZQoaAZHQHFPlxS5y2hoB00YAWgIR0CUkPNipeeGdX2UKGgGR0Byu+4LCvX9aAdNKwFoCEdAlJGI/qxC6nV9lChoBkdAbuyJHiFTN2gHTWQBaAhHQJSSGdAgPmR1fZQoaAZHQG+iLNOdoWZoB00sAWgIR0CUksvo/zJ7dX2UKGgGR0BsxoysS00FaAdNGwFoCEdAlJLtGd7OV3V9lChoBkdAcnM6guh9LGgHTUsBaAhHQJSTSVv/BFd1fZQoaAZHQHFe2qkuYhNoB00iAWgIR0CUk/6NlyzYdX2UKGgGR0BuR09QoCuEaAdNJgFoCEdAlJcZYcNpd3V9lChoBkdAcVtSWqtHQWgHTVgBaAhHQJSXm+9Jz1d1fZQoaAZHQG5+1qesgdRoB00BAWgIR0CUmB9C/oJRdX2UKGgGR0Bw8Lkp7TlUaAdNDAFoCEdAlJjEuQIUrXV9lChoBkdARvY8+zMRpWgHS/NoCEdAlJkJwjt5U3V9lChoBkdAbxMFg2IfsGgHTTYBaAhHQJSZawiaAnV1fZQoaAZHQFVQ4yGi5/doB0u/aAhHQJSav8FY+0R1fZQoaAZHQHJsLZezD4xoB00RAWgIR0CUnPjriVB2dX2UKGgGR0Bt2d2HLzPKaAdNMwFoCEdAlJ0smv4dqHV9lChoBkdAcocDZDiOvWgHS/doCEdAlJ8UXLvCuXV9lChoBkdAb+SSUTtb92gHTSEBaAhHQJSfPhESdvt1fZQoaAZHQHCQPAwfyPNoB00YAWgIR0CUn6ol2NeddX2UKGgGR0Bv6PEMspXqaAdL9mgIR0CUn/QBPsRhdX2UKGgGR0Bx2+KrJbMYaAdNNwFoCEdAlKARYNiH7HV9lChoBkdAcaN0D2alUWgHTTkBaAhHQJShPczqKP51fZQoaAZHQHLlWQCCBf9oB00zAWgIR0CUoWknCwbEdX2UKGgGR0BwRjpY9xIbaAdL/GgIR0CUo93QD3dsdX2UKGgGR0Bw4hy6tknUaAdNLAFoCEdAlKQKwpvxY3V9lChoBkdAcQUqtHQQc2gHTT4BaAhHQJSlaDnNgSh1fZQoaAZHQHEd7876pHZoB00wAWgIR0CUpYYpDu0DdX2UKGgGR0BzcDUz9CNTaAdNOQFoCEdAlKWyZv1lG3V9lChoBkdAcObLg4wRG2gHTVQBaAhHQJSl5nbqQil1fZQoaAZHQEtCUCaJAMVoB0vsaAhHQJSl9bLU1AJ1fZQoaAZHQGpZVQAMlTpoB034AmgIR0CU6R2DQJHBdX2UKGgGR0BiPg8wHqu9aAdN6ANoCEdAlPd6fra/RHV9lChoBkdAbX8jcmBvrGgHTTYDaAhHQJT8dGus90R1fZQoaAZHQF6QFERaouRoB03oA2gIR0CU/J3X7LuAdX2UKGgGR0Bfysrd30PIaAdN6ANoCEdAlQGHm7rcCnV9lChoBkdAYyrNmlImPmgHTegDaAhHQJUCA8nuy/t1fZQoaAZHQFsA0aZQYUFoB03oA2gIR0CVA2uHN5dGdX2UKGgGR0BKZ7J4jbBXaAdN6ANoCEdAlQSyLdepoHV9lChoBkdAYMO5wwTM7mgHTegDaAhHQJUIx9y925h1fZQoaAZHQFy6j7ALy+ZoB03oA2gIR0CVCVYVIqb0dX2UKGgGR0Bb6a2KEWZaaAdN6ANoCEdAlQ67pV0cO3V9lChoBkdAU9EIKMNtqGgHTegDaAhHQJURaexwAEN1fZQoaAZHQF02S3solUpoB03oA2gIR0CVEaglF+d9dX2UKGgGR0BgLcDU3GXHaAdN6ANoCEdAlRHwt4A0bnV9lChoBkdAYLTGpda+vmgHTegDaAhHQJUSOGCZnct1fZQoaAZHQF06xXXAdn1oB03oA2gIR0CVElRsdkrgdX2UKGgGR0BuYHDP4VRDaAdNdgFoCEdAlS8EGFBY3nV9lChoBkdAWQl4oqkM1GgHTegDaAhHQJVZi9wm3OR1fZQoaAZHQFp7tMPBi1BoB03oA2gIR0CVaQRB/qgRdX2UKGgGR0Bnp3Jmukk9aAdNZQNoCEdAlWv3L/0dzXV9lChoBkdAXYB1Oj7AL2gHTegDaAhHQJVvMhllK9R1fZQoaAZHQGGew+UyHmBoB03oA2gIR0CVb1PuXu3MdX2UKGgGR0BjCmF8G9pRaAdN6ANoCEdAlXPKfjCHh3V9lChoBkdAYnZitJWeYmgHTegDaAhHQJV0PmSyMUB1fZQoaAZHQFvBhKlHjIdoB03oA2gIR0CVdZq7ROUMdX2UKGgGR0BiUqUVzp5eaAdN6ANoCEdAlXkdfb9IgHV9lChoBkdAWtvxz7uUlmgHTegDaAhHQJV/TKT0QK91fZQoaAZHQGLjaF/QSjBoB03oA2gIR0CVgj9jPOY6dX2UKGgGR0Ba3BNdqtYCaAdN6ANoCEdAlYJ+FcpsoHV9lChoBkdAXOA6EJ0GNmgHTegDaAhHQJWCyXgLqlh1fZQoaAZHQF/dnfEXLvFoB03oA2gIR0CVgxoaDPGAdX2UKGgGR0BZrTwtrbg1aAdN6ANoCEdAlYM18LKFI3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b0d2578294db4ad1a8548b8ae9a031eef16c4635cc6b2614e011ce26825256b
|
3 |
+
size 147501
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c9a3ea5c3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c9a3ea5c430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c9a3ea5c4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c9a3ea5c550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c9a3ea5c5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c9a3ea5c670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c9a3ea5c700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c9a3ea5c790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c9a3ea5c820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c9a3ea5c8b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9a3ea5c940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c9a3ea5c9d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c9a3ea1d900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1735019998610758247,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN5Jr3sRZ86YpU4OzcKkT0FafS6kZ8RPAAAgD8AAIA/8+3AvdmTdj7LGcO9518TvrQV4rxFGam9AAAAAAAAAAAAttO87Nz9u+WBi71GTws9WaBXPb5S5L0AAIA/AACAP9qkiz0puFc7cS8cPPAxUjyulDW7MUypPAAAAAAAAAAAMyMhvQpnPbkKCr46mvr+NOxaWLvugOC5AACAPwAAgD+aQYQ8uAajuSoYBr0Fy2Y8sWD5O+b+ST0AAIA/AACAPzMynbwpwCa6TgKKN2AgCLJqosi7g0ajtgAAgD8AAIA/TclsvtMXbT9HvCU9+TSwvmFoi74r01U+AAAAAAAAAACGETY+rDfzPqo0z71iGJy+5TCwPRKXy70AAAAAAAAAAM02Lb0Urqe6OxiWucbaXDhpIG67sGShOAAAgD8AAIA/ZoLFPPO1UT/smUo91P/GvnkDnzxAdNm7AAAAAAAAAACtJpW++ZNaP1Zkhb2pza++z2irvjO3Hj4AAAAAAAAAAJqROrzhpJe61zwzOuIwmzjL16G6PX3HuAAAgD8AAIA/M0bNvamYSD/ugxO9zGW4vgiwXb0w0Js7AAAAAAAAAAAdSoo+JixDP5omzb2hdba+YvOIPoIk2b0AAAAAAAAAADOzZrlIUYI5ae6Xuu4ToLvSLRy7w2mMvAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAujc/MW46MAWyUTQYBjAF0lEdAlGLdMbm2cHV9lChoBkdAcAoP1tfoimgHTQkBaAhHQJRjGq+8Gs51fZQoaAZHQHJUrypaRp1oB00KAWgIR0CUZQdc0LtvdX2UKGgGR0Bu6nxDst03aAdNLwFoCEdAlGgftdAxBXV9lChoBkdAcCtG8274BWgHTTgBaAhHQJRolaiblRx1fZQoaAZHQCjmAd4mkWRoB0vpaAhHQJRo9E2HclB1fZQoaAZHQG5Y5dWyTpxoB00QAWgIR0CUaSNo8IRidX2UKGgGR0Buu4GY8dPtaAdNOgFoCEdAlGmEwevIO3V9lChoBkdAcol8XenAI2gHTTcBaAhHQJRphfD1oQF1fZQoaAZHQHNH8lLOAy5oB01cAWgIR0CUalx0uDjBdX2UKGgGR0BwxUk0Jng6aAdNQQFoCEdAlGpfPC2tuHV9lChoBkdAcSg6nzg/DGgHTQYBaAhHQJRq2TyJ9Ap1fZQoaAZHQHBV3xBmf5FoB00rAWgIR0CUfP40Mw10dX2UKGgGR0BwVgPEsJ6ZaAdNQQFoCEdAlH4VhCtzS3V9lChoBkdAcKtM9bHIZWgHTTUBaAhHQJR+tiYsunN1fZQoaAZHQG2mJKSPluFoB00eAWgIR0CUf7iMYMvzdX2UKGgGR0BxEfgzguRLaAdNKAFoCEdAlIAqKUFB6nV9lChoBkdAcP5s4ku6E2gHTT0BaAhHQJSBE+iaiK11fZQoaAZHQHCXKB7NSqFoB00dAWgIR0CUgXSmZVn3dX2UKGgGR0BQb49gWrOraAdL6mgIR0CUgmaB7NSqdX2UKGgGR0ByTUK4QSSNaAdNFAFoCEdAlIOp/5LytnV9lChoBkdAbZzx82JizGgHTRgBaAhHQJSEbMX7+DR1fZQoaAZHQHC/P+n62v1oB00RAWgIR0CUha5eqrBCdX2UKGgGR0Bwx/EzfrKOaAdNLwFoCEdAlIXcaS9ug3V9lChoBkdAb7D6FdszmGgHTTUBaAhHQJSGGM98qnZ1fZQoaAZHQHCa5b6guh9oB01lAWgIR0CUhp7yhBZ7dX2UKGgGR0Bu0W+K0lZ6aAdNLgFoCEdAlIdan752yXV9lChoBkdAcNcBun/DL2gHTSQBaAhHQJSHwGiYb851fZQoaAZHQHEdBDst03hoB01PAWgIR0CUh/sCT2WZdX2UKGgGR0BxaylwcYIjaAdNDQFoCEdAlIinSOR1YHV9lChoBkdAcGtuuzQeFWgHTUkBaAhHQJSKC9mHxjJ1fZQoaAZHQHG3+GsV+JBoB00nAWgIR0CUiwUpuuRtdX2UKGgGR0Byv1rzoUzsaAdNHgFoCEdAlIwPDYRNAXV9lChoBkdAbJGdtEXtSmgHTVEBaAhHQJSMHsByS3d1fZQoaAZHQHEW8mOU+s5oB01IAWgIR0CUjTtb9qDcdX2UKGgGR0BxOPI7vG6xaAdNNAFoCEdAlI31ndweeXV9lChoBkdAcCs9S/CZW2gHTSABaAhHQJSPOOp84Px1fZQoaAZHQEgZ3yI55qxoB0vqaAhHQJSQ4MDwH7h1fZQoaAZHQHFPlxS5y2hoB00YAWgIR0CUkPNipeeGdX2UKGgGR0Byu+4LCvX9aAdNKwFoCEdAlJGI/qxC6nV9lChoBkdAbuyJHiFTN2gHTWQBaAhHQJSSGdAgPmR1fZQoaAZHQG+iLNOdoWZoB00sAWgIR0CUksvo/zJ7dX2UKGgGR0BsxoysS00FaAdNGwFoCEdAlJLtGd7OV3V9lChoBkdAcnM6guh9LGgHTUsBaAhHQJSTSVv/BFd1fZQoaAZHQHFe2qkuYhNoB00iAWgIR0CUk/6NlyzYdX2UKGgGR0BuR09QoCuEaAdNJgFoCEdAlJcZYcNpd3V9lChoBkdAcVtSWqtHQWgHTVgBaAhHQJSXm+9Jz1d1fZQoaAZHQG5+1qesgdRoB00BAWgIR0CUmB9C/oJRdX2UKGgGR0Bw8Lkp7TlUaAdNDAFoCEdAlJjEuQIUrXV9lChoBkdARvY8+zMRpWgHS/NoCEdAlJkJwjt5U3V9lChoBkdAbxMFg2IfsGgHTTYBaAhHQJSZawiaAnV1fZQoaAZHQFVQ4yGi5/doB0u/aAhHQJSav8FY+0R1fZQoaAZHQHJsLZezD4xoB00RAWgIR0CUnPjriVB2dX2UKGgGR0Bt2d2HLzPKaAdNMwFoCEdAlJ0smv4dqHV9lChoBkdAcocDZDiOvWgHS/doCEdAlJ8UXLvCuXV9lChoBkdAb+SSUTtb92gHTSEBaAhHQJSfPhESdvt1fZQoaAZHQHCQPAwfyPNoB00YAWgIR0CUn6ol2NeddX2UKGgGR0Bv6PEMspXqaAdL9mgIR0CUn/QBPsRhdX2UKGgGR0Bx2+KrJbMYaAdNNwFoCEdAlKARYNiH7HV9lChoBkdAcaN0D2alUWgHTTkBaAhHQJShPczqKP51fZQoaAZHQHLlWQCCBf9oB00zAWgIR0CUoWknCwbEdX2UKGgGR0BwRjpY9xIbaAdL/GgIR0CUo93QD3dsdX2UKGgGR0Bw4hy6tknUaAdNLAFoCEdAlKQKwpvxY3V9lChoBkdAcQUqtHQQc2gHTT4BaAhHQJSlaDnNgSh1fZQoaAZHQHEd7876pHZoB00wAWgIR0CUpYYpDu0DdX2UKGgGR0BzcDUz9CNTaAdNOQFoCEdAlKWyZv1lG3V9lChoBkdAcObLg4wRG2gHTVQBaAhHQJSl5nbqQil1fZQoaAZHQEtCUCaJAMVoB0vsaAhHQJSl9bLU1AJ1fZQoaAZHQGpZVQAMlTpoB034AmgIR0CU6R2DQJHBdX2UKGgGR0BiPg8wHqu9aAdN6ANoCEdAlPd6fra/RHV9lChoBkdAbX8jcmBvrGgHTTYDaAhHQJT8dGus90R1fZQoaAZHQF6QFERaouRoB03oA2gIR0CU/J3X7LuAdX2UKGgGR0Bfysrd30PIaAdN6ANoCEdAlQGHm7rcCnV9lChoBkdAYyrNmlImPmgHTegDaAhHQJUCA8nuy/t1fZQoaAZHQFsA0aZQYUFoB03oA2gIR0CVA2uHN5dGdX2UKGgGR0BKZ7J4jbBXaAdN6ANoCEdAlQSyLdepoHV9lChoBkdAYMO5wwTM7mgHTegDaAhHQJUIx9y925h1fZQoaAZHQFy6j7ALy+ZoB03oA2gIR0CVCVYVIqb0dX2UKGgGR0Bb6a2KEWZaaAdN6ANoCEdAlQ67pV0cO3V9lChoBkdAU9EIKMNtqGgHTegDaAhHQJURaexwAEN1fZQoaAZHQF02S3solUpoB03oA2gIR0CVEaglF+d9dX2UKGgGR0BgLcDU3GXHaAdN6ANoCEdAlRHwt4A0bnV9lChoBkdAYLTGpda+vmgHTegDaAhHQJUSOGCZnct1fZQoaAZHQF06xXXAdn1oB03oA2gIR0CVElRsdkrgdX2UKGgGR0BuYHDP4VRDaAdNdgFoCEdAlS8EGFBY3nV9lChoBkdAWQl4oqkM1GgHTegDaAhHQJVZi9wm3OR1fZQoaAZHQFp7tMPBi1BoB03oA2gIR0CVaQRB/qgRdX2UKGgGR0Bnp3Jmukk9aAdNZQNoCEdAlWv3L/0dzXV9lChoBkdAXYB1Oj7AL2gHTegDaAhHQJVvMhllK9R1fZQoaAZHQGGew+UyHmBoB03oA2gIR0CVb1PuXu3MdX2UKGgGR0BjCmF8G9pRaAdN6ANoCEdAlXPKfjCHh3V9lChoBkdAYnZitJWeYmgHTegDaAhHQJV0PmSyMUB1fZQoaAZHQFvBhKlHjIdoB03oA2gIR0CVdZq7ROUMdX2UKGgGR0BiUqUVzp5eaAdN6ANoCEdAlXkdfb9IgHV9lChoBkdAWtvxz7uUlmgHTegDaAhHQJV/TKT0QK91fZQoaAZHQGLjaF/QSjBoB03oA2gIR0CVgj9jPOY6dX2UKGgGR0Ba3BNdqtYCaAdN6ANoCEdAlYJ+FcpsoHV9lChoBkdAXOA6EJ0GNmgHTegDaAhHQJWCyXgLqlh1fZQoaAZHQF/dnfEXLvFoB03oA2gIR0CVgxoaDPGAdX2UKGgGR0BZrTwtrbg1aAdN6ANoCEdAlYM18LKFI3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb924d30070956f841878aef102bb56954251a1e7d0034eea0d2cda1b3f5c7e4
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5c226788109a7a501f1880f188fa8dd4d9a175f5d32ca12c63d0c8e3072e0a7
|
3 |
+
size 43634
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (158 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.8381984, "std_reward": 20.564985338434383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-24T06:32:58.856161"}
|