File size: 3,130 Bytes
24e76b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c97a2
 
24e76b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c97a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e76b4
 
 
 
 
e5c97a2
24e76b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-google-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5261
- Wer: 0.3351

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.5764        | 1.0   | 500   | 2.3358          | 1.0    |
| 0.9494        | 2.01  | 1000  | 0.6086          | 0.5448 |
| 0.4527        | 3.01  | 1500  | 0.4731          | 0.4685 |
| 0.307         | 4.02  | 2000  | 0.4432          | 0.4341 |
| 0.2366        | 5.02  | 2500  | 0.4343          | 0.4025 |
| 0.1934        | 6.02  | 3000  | 0.4284          | 0.4105 |
| 0.154         | 7.03  | 3500  | 0.4709          | 0.3936 |
| 0.14          | 8.03  | 4000  | 0.4296          | 0.3889 |
| 0.1189        | 9.04  | 4500  | 0.4864          | 0.3862 |
| 0.1057        | 10.04 | 5000  | 0.4903          | 0.3776 |
| 0.1034        | 11.04 | 5500  | 0.4889          | 0.3838 |
| 0.0899        | 12.05 | 6000  | 0.4680          | 0.3701 |
| 0.0864        | 13.05 | 6500  | 0.4981          | 0.3608 |
| 0.0714        | 14.06 | 7000  | 0.4608          | 0.3589 |
| 0.0673        | 15.06 | 7500  | 0.4970          | 0.3754 |
| 0.0606        | 16.06 | 8000  | 0.5344          | 0.3618 |
| 0.0603        | 17.07 | 8500  | 0.4980          | 0.3675 |
| 0.0588        | 18.07 | 9000  | 0.5339          | 0.3601 |
| 0.0453        | 19.08 | 9500  | 0.4973          | 0.3526 |
| 0.0433        | 20.08 | 10000 | 0.5359          | 0.3572 |
| 0.0421        | 21.08 | 10500 | 0.4885          | 0.3532 |
| 0.0359        | 22.09 | 11000 | 0.5184          | 0.3471 |
| 0.032         | 23.09 | 11500 | 0.5230          | 0.3483 |
| 0.0333        | 24.1  | 12000 | 0.5512          | 0.3474 |
| 0.0279        | 25.1  | 12500 | 0.5102          | 0.3437 |
| 0.0232        | 26.1  | 13000 | 0.5195          | 0.3384 |
| 0.0237        | 27.11 | 13500 | 0.5350          | 0.3355 |
| 0.0209        | 28.11 | 14000 | 0.5432          | 0.3368 |
| 0.023         | 29.12 | 14500 | 0.5261          | 0.3351 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.12.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1