--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5261 - Wer: 0.3351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5764 | 1.0 | 500 | 2.3358 | 1.0 | | 0.9494 | 2.01 | 1000 | 0.6086 | 0.5448 | | 0.4527 | 3.01 | 1500 | 0.4731 | 0.4685 | | 0.307 | 4.02 | 2000 | 0.4432 | 0.4341 | | 0.2366 | 5.02 | 2500 | 0.4343 | 0.4025 | | 0.1934 | 6.02 | 3000 | 0.4284 | 0.4105 | | 0.154 | 7.03 | 3500 | 0.4709 | 0.3936 | | 0.14 | 8.03 | 4000 | 0.4296 | 0.3889 | | 0.1189 | 9.04 | 4500 | 0.4864 | 0.3862 | | 0.1057 | 10.04 | 5000 | 0.4903 | 0.3776 | | 0.1034 | 11.04 | 5500 | 0.4889 | 0.3838 | | 0.0899 | 12.05 | 6000 | 0.4680 | 0.3701 | | 0.0864 | 13.05 | 6500 | 0.4981 | 0.3608 | | 0.0714 | 14.06 | 7000 | 0.4608 | 0.3589 | | 0.0673 | 15.06 | 7500 | 0.4970 | 0.3754 | | 0.0606 | 16.06 | 8000 | 0.5344 | 0.3618 | | 0.0603 | 17.07 | 8500 | 0.4980 | 0.3675 | | 0.0588 | 18.07 | 9000 | 0.5339 | 0.3601 | | 0.0453 | 19.08 | 9500 | 0.4973 | 0.3526 | | 0.0433 | 20.08 | 10000 | 0.5359 | 0.3572 | | 0.0421 | 21.08 | 10500 | 0.4885 | 0.3532 | | 0.0359 | 22.09 | 11000 | 0.5184 | 0.3471 | | 0.032 | 23.09 | 11500 | 0.5230 | 0.3483 | | 0.0333 | 24.1 | 12000 | 0.5512 | 0.3474 | | 0.0279 | 25.1 | 12500 | 0.5102 | 0.3437 | | 0.0232 | 26.1 | 13000 | 0.5195 | 0.3384 | | 0.0237 | 27.11 | 13500 | 0.5350 | 0.3355 | | 0.0209 | 28.11 | 14000 | 0.5432 | 0.3368 | | 0.023 | 29.12 | 14500 | 0.5261 | 0.3351 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1