--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: hebert-finetuned-hebrew-metaphor results: [] widget: - text: "לטחון [SEP] להכנת קפה במקינטה יש לטחון את הקפה טחינה גסה יותר מאשר קפה לאספרסו" - text: "לטחון [SEP] תעירו אותי שיקרה עוד משהו מעניין, ביינתיים אין מה לטחון את זה" - text: "לבשל [SEP] השחקן השתמש ביכולותיו הפיזיות - הגובה והקפיצה שלו - כדי לבשל או להבקיע שערים" - text: "לבשל [SEP] שישי בבוקר זה זמן טוב כדי לבשל ארוחה יפה" --- # hebert-finetuned-hebrew-metaphor This model is a fine-tuned version of [avichr/heBERT](https://huggingface.co/avichr/heBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4682 - Accuracy: 0.9510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 389 | 0.1813 | 0.9379 | | 0.2546 | 2.0 | 778 | 0.2309 | 0.9479 | | 0.08 | 3.0 | 1167 | 0.3342 | 0.9492 | | 0.0298 | 4.0 | 1556 | 0.4076 | 0.9460 | | 0.0298 | 5.0 | 1945 | 0.3803 | 0.9485 | | 0.0105 | 6.0 | 2334 | 0.3674 | 0.9454 | | 0.0077 | 7.0 | 2723 | 0.5356 | 0.9410 | | 0.0088 | 8.0 | 3112 | 0.4776 | 0.9422 | | 0.0044 | 9.0 | 3501 | 0.4258 | 0.9504 | | 0.0044 | 10.0 | 3890 | 0.4305 | 0.9523 | | 0.001 | 11.0 | 4279 | 0.4357 | 0.9548 | | 0.0031 | 12.0 | 4668 | 0.4770 | 0.9473 | | 0.0015 | 13.0 | 5057 | 0.4604 | 0.9523 | | 0.0015 | 14.0 | 5446 | 0.4670 | 0.9510 | | 0.0022 | 15.0 | 5835 | 0.4682 | 0.9510 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3