--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_17_0 model-index: - name: speecht5_finetuned_local_language_dataset_bn results: [] --- # speecht5_finetuned_local_language_dataset_bn This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8489 | 0.1675 | 100 | 0.7253 | | 0.7415 | 0.3349 | 200 | 0.6669 | | 0.6951 | 0.5024 | 300 | 0.6351 | | 0.6798 | 0.6699 | 400 | 0.6267 | | 0.6757 | 0.8373 | 500 | 0.6246 | | 0.674 | 1.0048 | 600 | 0.6127 | | 0.6728 | 1.1723 | 700 | 0.6087 | | 0.6599 | 1.3398 | 800 | 0.6061 | | 0.6527 | 1.5072 | 900 | 0.6048 | | 0.6583 | 1.6747 | 1000 | 0.6038 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1