--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-21-12-2022_exam_part3_1 co2_eq_emissions: emissions: 20.48292260935143 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2557478179 - CO2 Emissions (in grams): 20.4829 ## Validation Metrics - Loss: 0.009 - Accuracy: 0.998 - Precision: 0.796 - Recall: 0.808 - F1: 0.802 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-21-12-2022_exam_part3_1-2557478179 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-21-12-2022_exam_part3_1-2557478179", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-21-12-2022_exam_part3_1-2557478179", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```