updated the code
Browse files- handler.py +44 -27
handler.py
CHANGED
@@ -9,74 +9,91 @@ from typing import Dict, Any, List
|
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, model_path: str = None):
|
11 |
"""
|
12 |
-
Initialize the endpoint handler using the ColPali
|
13 |
If no model path is provided, it defaults to 'vidore/colpali-v1.3-hf'.
|
14 |
"""
|
15 |
if model_path is None:
|
16 |
model_path = os.path.dirname(os.path.realpath(__file__))
|
17 |
try:
|
|
|
18 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
-
#
|
20 |
self.model = ColPaliForRetrieval.from_pretrained(
|
21 |
model_path,
|
22 |
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
23 |
trust_remote_code=True,
|
24 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
25 |
).to(self.device)
|
26 |
-
#
|
27 |
self.processor = ColPaliProcessor.from_pretrained(model_path, trust_remote_code=True)
|
28 |
except Exception as e:
|
29 |
raise RuntimeError(f"Error loading model or processor: {e}")
|
30 |
|
31 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
32 |
"""
|
33 |
-
Process the input data
|
34 |
-
and return the outputs.
|
35 |
|
36 |
Expects a dictionary with an "inputs" key containing a list of dictionaries.
|
37 |
-
Each dictionary
|
38 |
-
|
39 |
-
- "prompt": (optional) a text prompt (default is used if missing).
|
40 |
"""
|
41 |
try:
|
42 |
inputs_list = data.get("inputs", [])
|
43 |
-
config = data.get("config", {})
|
44 |
-
|
45 |
if not inputs_list or not isinstance(inputs_list, list):
|
46 |
-
return {"error": "Inputs should be a list of dictionaries with 'image'
|
47 |
|
48 |
images: List[Image.Image] = []
|
49 |
-
texts: List[str] = []
|
50 |
-
|
51 |
for item in inputs_list:
|
52 |
image_b64 = item.get("image")
|
53 |
if not image_b64:
|
54 |
return {"error": "One of the input items is missing 'image' data."}
|
55 |
try:
|
56 |
-
# Decode the base64
|
57 |
image = Image.open(io.BytesIO(base64.b64decode(image_b64))).convert("RGB")
|
58 |
images.append(image)
|
59 |
except Exception as e:
|
60 |
return {"error": f"Failed to decode one of the images: {e}"}
|
61 |
-
# Use the provided prompt or a default prompt.
|
62 |
-
prompt = item.get("prompt", "Describe the image content in detail.")
|
63 |
-
texts.append(prompt)
|
64 |
|
65 |
-
#
|
66 |
model_inputs = self.processor(
|
67 |
images=images,
|
68 |
-
text=texts,
|
69 |
-
padding=True,
|
70 |
return_tensors="pt",
|
|
|
71 |
).to(self.device)
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
return {"responses":
|
80 |
|
81 |
except Exception as e:
|
82 |
return {"error": f"Unexpected error: {e}"}
|
@@ -87,7 +104,7 @@ _service = EndpointHandler()
|
|
87 |
def handle(data, context):
|
88 |
"""
|
89 |
Entry point for the Hugging Face dedicated inference endpoint.
|
90 |
-
Processes
|
91 |
"""
|
92 |
try:
|
93 |
if data is None:
|
|
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, model_path: str = None):
|
11 |
"""
|
12 |
+
Initialize the endpoint handler using the ColPali model for OCR extraction.
|
13 |
If no model path is provided, it defaults to 'vidore/colpali-v1.3-hf'.
|
14 |
"""
|
15 |
if model_path is None:
|
16 |
model_path = os.path.dirname(os.path.realpath(__file__))
|
17 |
try:
|
18 |
+
# Use GPU if available, otherwise CPU.
|
19 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
# Load the specialized ColPali model (designed for retrieval but repurposed here for OCR generation).
|
21 |
self.model = ColPaliForRetrieval.from_pretrained(
|
22 |
model_path,
|
23 |
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
24 |
trust_remote_code=True,
|
25 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
26 |
).to(self.device)
|
27 |
+
# Load the processor that handles image preprocessing.
|
28 |
self.processor = ColPaliProcessor.from_pretrained(model_path, trust_remote_code=True)
|
29 |
except Exception as e:
|
30 |
raise RuntimeError(f"Error loading model or processor: {e}")
|
31 |
|
32 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
33 |
"""
|
34 |
+
Process the input data for OCR extraction.
|
|
|
35 |
|
36 |
Expects a dictionary with an "inputs" key containing a list of dictionaries.
|
37 |
+
Each dictionary must have an "image" key with a base64-encoded image string.
|
38 |
+
For OCR extraction, no text prompt is provided.
|
|
|
39 |
"""
|
40 |
try:
|
41 |
inputs_list = data.get("inputs", [])
|
|
|
|
|
42 |
if not inputs_list or not isinstance(inputs_list, list):
|
43 |
+
return {"error": "Inputs should be a list of dictionaries with an 'image' key."}
|
44 |
|
45 |
images: List[Image.Image] = []
|
|
|
|
|
46 |
for item in inputs_list:
|
47 |
image_b64 = item.get("image")
|
48 |
if not image_b64:
|
49 |
return {"error": "One of the input items is missing 'image' data."}
|
50 |
try:
|
51 |
+
# Decode the base64 string and convert to an RGB PIL image.
|
52 |
image = Image.open(io.BytesIO(base64.b64decode(image_b64))).convert("RGB")
|
53 |
images.append(image)
|
54 |
except Exception as e:
|
55 |
return {"error": f"Failed to decode one of the images: {e}"}
|
|
|
|
|
|
|
56 |
|
57 |
+
# Process only images with the processor (to avoid the text+image conflict).
|
58 |
model_inputs = self.processor(
|
59 |
images=images,
|
|
|
|
|
60 |
return_tensors="pt",
|
61 |
+
padding=True,
|
62 |
).to(self.device)
|
63 |
|
64 |
+
# Manually create a dummy text prompt by inserting a beginning-of-sequence token.
|
65 |
+
# This is necessary to trigger text generation even though no prompt is provided.
|
66 |
+
bos_token_id = (
|
67 |
+
self.processor.tokenizer.bos_token_id
|
68 |
+
or self.processor.tokenizer.cls_token_id
|
69 |
+
or self.processor.tokenizer.pad_token_id
|
70 |
+
)
|
71 |
+
if bos_token_id is None:
|
72 |
+
raise RuntimeError("No BOS token found in the tokenizer.")
|
73 |
+
batch_size = model_inputs["pixel_values"].shape[0]
|
74 |
+
dummy_input_ids = torch.full((batch_size, 1), bos_token_id, dtype=torch.long).to(self.device)
|
75 |
+
model_inputs["input_ids"] = dummy_input_ids
|
76 |
+
|
77 |
+
# Generation parameters (can be overridden via the "config" field).
|
78 |
+
config = data.get("config", {})
|
79 |
+
max_new_tokens = config.get("max_new_tokens", 256)
|
80 |
+
temperature = config.get("temperature", 0.8)
|
81 |
+
num_return_sequences = config.get("num_return_sequences", 1)
|
82 |
+
do_sample = bool(config.get("do_sample", True))
|
83 |
+
|
84 |
+
# Call generate on the model using the image-only inputs augmented with the dummy text.
|
85 |
+
outputs = self.model.generate(
|
86 |
+
**model_inputs,
|
87 |
+
max_new_tokens=max_new_tokens,
|
88 |
+
temperature=temperature,
|
89 |
+
num_return_sequences=num_return_sequences,
|
90 |
+
do_sample=do_sample,
|
91 |
+
)
|
92 |
+
|
93 |
+
# Decode generated tokens into text using the processor's tokenizer.
|
94 |
+
text_output = self.processor.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
95 |
|
96 |
+
return {"responses": text_output}
|
97 |
|
98 |
except Exception as e:
|
99 |
return {"error": f"Unexpected error: {e}"}
|
|
|
104 |
def handle(data, context):
|
105 |
"""
|
106 |
Entry point for the Hugging Face dedicated inference endpoint.
|
107 |
+
Processes input data and returns the extracted OCR text.
|
108 |
"""
|
109 |
try:
|
110 |
if data is None:
|