File size: 13,755 Bytes
9418d8f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e223479c0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e223479c160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e223479c1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e223479c280>", "_build": "<function ActorCriticPolicy._build at 0x7e223479c310>", "forward": "<function ActorCriticPolicy.forward at 0x7e223479c3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e223479c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e223479c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e223479c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e223479c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e223479c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e223479c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e2234798a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701456827291399365, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACqSrxc1wq6L9Aut/eqQLGNOaK70EZQNgAAgD8AAIA/wGPoPWtYZD9ji+o9mUK8voIVCD6K/0g8AAAAAAAAAACa54O9Berju2IgejyeUoA8VGFAPbKVV70AAAAAAACAPzPnf71xxEE8xqkFPXZ1Vb57oy+9TqZVPQAAAAAAAAAAxpUbvgtCXD8agiW+W9YBv0BpBb4GBQI9AAAAAAAAAAAzq0U7SccWPUMt/D1z9l++UjNzPZLJ3LwAAAAAAAAAADOcDj1xBQ67ZmBLO9KRgDzFowg8ao1fvQAAgD8AAIA/c0Ntvjeiez9f6cu+O2Hjvviui76m3oS9AAAAAAAAAAAGySK+AH2mPvrTBj2wiY++piRavXWmUTwAAAAAAAAAAJprxDy4XIm7vmWmu5KqrjzJA+s8TuOTvQAAgD8AAIA/APwhPMNRd7r7Zly3Wmpmsr1F3DoMNoE2AACAPwAAgD+g3iM+WOS7PuZ9Gb40VIa+irG0vc5IGT0AAAAAAAAAAM13lrxcO3m6kco3OUEqATb+5tS4gMBXuAAAgD8AAIA/zRQAPCgnkD3yNIu9bVz3vclqG7yDkBu8AAAAAAAAAADwj0++ww+EPpasiT6zK1a+lpZrO77EkD0AAAAAAAAAAM30wz3hU4Q/gmluPkC/3b6bvgs+Z7MZPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLExLTQVsWMAWyUTWABjAF0lEdAk7cxx95Qg3V9lChoBkdAcEtZydWhiGgHTU4BaAhHQJO3cyeqaPV1fZQoaAZHQG4zt6PbO/toB01kAWgIR0CTt7Z4Oc2BdX2UKGgGR0ByGSLrHEMtaAdNpwFoCEdAk7hUa2nbZnV9lChoBkdAb8q7dSEUTWgHTQ8BaAhHQJO4qHoHLRt1fZQoaAZHQHEJ1CgK4QVoB00mAWgIR0CTuMNjslcAdX2UKGgGR0Brid5IH1OCaAdNHAFoCEdAk7kvI8yN43V9lChoBkdAcDklNUOuq2gHTX8BaAhHQJO74z3yqdZ1fZQoaAZHQHHflMM7U5NoB03xAmgIR0CTvRwo9cKPdX2UKGgGR0Bv1GRs/IKdaAdNMgFoCEdAk73IWxhUi3V9lChoBkdAcWaHNorWiGgHTbYDaAhHQJO/HCyhSLt1fZQoaAZHQG78FGG21D1oB00TAWgIR0CTwPtuUD+zdX2UKGgGR0BuatBY3eenaAdNAgFoCEdAk8E/r4WUKXV9lChoBkdAUZVG0/nnuGgHS+NoCEdAk8HrcsUZenV9lChoBkdAbgjZA6dUbWgHTToBaAhHQJPCF6Y3Ns51fZQoaAZHQG5miPZIxxloB01kA2gIR0CTwjBMBZIQdX2UKGgGR0ByY4dgfEGaaAdNAQFoCEdAk8PYP9UCJXV9lChoBkdAcRqihWYF7mgHTSYBaAhHQJPETzFuNxV1fZQoaAZHQG40N2C/XXloB008AWgIR0CTxdbBXS0CdX2UKGgGR0Bx/Z5Pdl/ZaAdNQgFoCEdAk8ha1LJ0XHV9lChoBkdAbX+ISDh99mgHTU0BaAhHQJPIXJRwZO11fZQoaAZHQHHCSn+AEuBoB02rAWgIR0CTydBVdX1bdX2UKGgGR0BvHmyxA0KraAdNEgFoCEdAk8sSqQzUJHV9lChoBkdAb+hC79Q40mgHTVEBaAhHQJPND6ab4Jx1fZQoaAZHQHLH55u63ApoB03QAWgIR0CTzpFFlTWHdX2UKGgGR0Bu5qXlbNbDaAdNRgFoCEdAk88Ntygf2nV9lChoBkdAcokP2f02+GgHTSkBaAhHQJPPK3I+4b11fZQoaAZHQHFDAJC0F8poB00oAWgIR0CT0t3kgfU4dX2UKGgGR0BxdCdEsrd4aAdNQAFoCEdAk9L/NzKcNHV9lChoBkdAbGX+OwPiDWgHTRcBaAhHQJPTs7tAs051fZQoaAZHQG3lgE+xGDtoB00dAWgIR0CT1E4RVZLadX2UKGgGR0Bxj9hZyMkyaAdNUgFoCEdAk9S+40/GEXV9lChoBkdAcEjuZ1FH8WgHTYYBaAhHQJPWExagVXV1fZQoaAZHQHAbNvOyE+RoB01PAWgIR0CT12grpaA4dX2UKGgGR0ByYE3fhuO0aAdNEAFoCEdAk9e5YT0xunV9lChoBkdAcXdVwPy08mgHTTgBaAhHQJPYKXeFcpt1fZQoaAZHQHGMy9RJmNBoB03PAWgIR0CT2b39JjDsdX2UKGgGR0BwPBv99+gEaAdNaAFoCEdAk9n8K5TZQHV9lChoBkdAciu2K2rn1WgHTTcBaAhHQJPaCF23azx1fZQoaAZHQHDjgAQxvehoB00WAWgIR0CT2g4CIUJwdX2UKGgGR0ByS8mCyyD7aAdNOgFoCEdAk9y7bpNbknV9lChoBkdAcVZM5wOvuGgHTU0BaAhHQJPdJxIatLd1fZQoaAZHQHGoYVqN6xBoB01WAWgIR0CT3d/e+Eh8dX2UKGgGR0BxhAIAwPAgaAdNGAFoCEdAk94KtcObzHV9lChoBkdAckSLi++M62gHTRsBaAhHQJPeB2mpEQZ1fZQoaAZHQHNLi5NGmUJoB00UAWgIR0CT3wlRxcVydX2UKGgGR0BycicvugHvaAdNKQFoCEdAk+Avtx+8XnV9lChoBkdAb5k/u9eyA2gHTSABaAhHQJPhMRJ2+wl1fZQoaAZHQHMpmsA/9pBoB00RAWgIR0CT9E7CBPKudX2UKGgGR0Byu5F7Uoa2aAdNNgFoCEdAk/T+4b0e2nV9lChoBkdAcVsBEKE39GgHTQQBaAhHQJP10JLM9r51fZQoaAZHQHBtwLRa5gBoB00lAWgIR0CT9uf7aZhKdX2UKGgGR0Bw81yMkyDaaAdNOgFoCEdAk/gcRxtHhHV9lChoBkdAccmzJIUah2gHTeEBaAhHQJP4ZWFN+LF1fZQoaAZHQHJyGP5pJwtoB01DAWgIR0CT+HOI68xsdX2UKGgGR0Bwtnuy/sVtaAdNmQFoCEdAk/l18w5/9nV9lChoBkdAc5MXS0BwM2gHTRUBaAhHQJP54UVSGah1fZQoaAZHQHIvmfbsWwhoB00dAWgIR0CT+zWjXWe6dX2UKGgGR0BwwNTuOS4faAdNLAFoCEdAk/wMEvCdjHV9lChoBkdAcaeWepXIVGgHTUsBaAhHQJP8JNg0CRx1fZQoaAZHQG4rYmCyyD9oB00iAWgIR0CT/PsunMt9dX2UKGgGR0BxUu8Zk079aAdL+mgIR0CT/c69kBjndX2UKGgGR0BwZQf1YhdMaAdNVAFoCEdAk/319KEnLXV9lChoBkdAcQg24uscQ2gHTSQBaAhHQJQB8zl90A91fZQoaAZHQHJoWPxQSBdoB00uAWgIR0CUA27IT4+KdX2UKGgGR0BxH+n4wh4daAdNIwFoCEdAlAfqk690zXV9lChoBkdAbvllnRLK3mgHTTIBaAhHQJQIbWDpTuR1fZQoaAZHQHD8kY4yXUpoB00ZAWgIR0CUCQL8aXKKdX2UKGgGR0BuFhxkupS8aAdNNgFoCEdAlAlBFAmiQHV9lChoBkdAcvOKraM72mgHTV4BaAhHQJQJj/Ot4iZ1fZQoaAZHQHFzbZzxPO9oB00cAWgIR0CUDE8DB/I9dX2UKGgGR0BtbYemvW6LaAdNFAFoCEdAlAzIRqXWv3V9lChoBkdAcAL+Ofdyk2gHTTUBaAhHQJQNl2pyZKF1fZQoaAZHQHDVpn6Eal1oB01TAWgIR0CUDjqBmPHUdX2UKGgGR0Bwre4y44IbaAdNJAFoCEdAlA5oVymygXV9lChoBkdAcEufAKv3amgHTXYBaAhHQJQOgk6cRUZ1fZQoaAZHQG0H3tjTa0xoB03kAWgIR0CUDuCxNZeSdX2UKGgGR0BybQKrq+rVaAdNPgFoCEdAlA8zXWe6I3V9lChoBkdAb/mBKcurZWgHTQgBaAhHQJQQCC/XXiB1fZQoaAZHQGzSwTM7lq9oB00QAWgIR0CUESelbeMydX2UKGgGR0BxK2A+Y+jeaAdNvwJoCEdAlBMK5f+junV9lChoBkdAcFoeE7GNrGgHS/9oCEdAlBNpKFqSHXV9lChoBkdAcYbMAmzBymgHTQQBaAhHQJQT+Q0XP7h1fZQoaAZHQG+MyFXaJyhoB00oAWgIR0CUFKO7g88tdX2UKGgGR0BvVEGqxTsIaAdNHwFoCEdAlBUpKBd2PnV9lChoBkdAcieBIWgvlGgHTQYBaAhHQJQWLQ3PzFx1fZQoaAZHQEIuBWgezUtoB0v3aAhHQJQWlnwob4t1fZQoaAZHQHBMpOzposZoB01kAWgIR0CUF5fHggoxdX2UKGgGR0BwwWHmA9V4aAdNDAFoCEdAlBf8m0E5hnV9lChoBkdAbn+oAn2IwmgHTQoBaAhHQJQYK5VfeDZ1fZQoaAZHQHIRpzT4L1FoB00RAWgIR0CUGFT2nKnvdX2UKGgGR0BuGaZYxL00aAdNCgFoCEdAlBjjua4MF3V9lChoBkdAcPRYE4ecQWgHTUgBaAhHQJQZCN0eU6h1fZQoaAZHQHFummHgxahoB00hAWgIR0CUGmOLBKtgdX2UKGgGR0BwqKHnEETyaAdNWwFoCEdAlBs3lOoHcHV9lChoBkdAcbEP+GXXy2gHTSkBaAhHQJQb+U5dWyV1fZQoaAZHQHCzPugHu7ZoB0v5aAhHQJQeWll9Sdh1fZQoaAZHQHDS5hjOLR9oB004AWgIR0CUHp+NcW0rdX2UKGgGR0BvwIIrvsqsaAdNNQFoCEdAlB7jIikftHV9lChoBkdAbze6ltTDO2gHTTEBaAhHQJQfVvegte51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}