# Import libraries import os os.system('pip install nltk numpy') import nltk import numpy as np import pickle nltk.download('punkt') # Define predict_word function from collections import Counter def predict_word(model, last_word): if last_word in model: next_words = model[last_word] freq_dist = Counter(next_words) most_common_word = freq_dist.most_common(1)[0][0] return most_common_word else: return "" # Load the model with open("model.pkl", "rb") as f: model = pickle.load(f) # Run the prediction for 10 words input_words = input('Input words: ') for i in range(10): input_words_list = nltk.word_tokenize(input_words) last_word = input_words_list[-1] predicted_word = predict_word(model, last_word) input_words = f"{input_words}" + " " + f'{predicted_word}' print(input_words)