Commit
·
ee8d8d5
1
Parent(s):
0e32675
Create pipeline.py
Browse files- pipeline.py +36 -0
pipeline.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
|
4 |
+
class PreTrainedPipeline():
|
5 |
+
def __init__(self, path=""):
|
6 |
+
# IMPLEMENT_THIS
|
7 |
+
# Preload all the elements you are going to need at inference.
|
8 |
+
# For instance your model, processors, tokenizer that might be needed.
|
9 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
10 |
+
Initialize model
|
11 |
+
"""
|
12 |
+
package = os.path.join(path,"en_core_web_sm-any-py3-none-any.whl")
|
13 |
+
subprocess.check_call(
|
14 |
+
[sys.executable, "-m", "pip", "install", package]
|
15 |
+
)
|
16 |
+
raise NotImplementedError(
|
17 |
+
"Please implement TokenClassificationPipeline __init__ function"
|
18 |
+
)
|
19 |
+
|
20 |
+
def __call__(self, inputs: str) -> List[Dict[str, Any]]:
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
inputs (:obj:`str`):
|
24 |
+
a string containing some text
|
25 |
+
Return:
|
26 |
+
A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing :
|
27 |
+
- "entity_group": A string representing what the entity is.
|
28 |
+
- "word": A substring of the original string that was detected as an entity.
|
29 |
+
- "start": the offset within `input` leading to `answer`. context[start:stop] == word
|
30 |
+
- "end": the ending offset within `input` leading to `answer`. context[start:stop] === word
|
31 |
+
- "score": A score between 0 and 1 describing how confident the model is for this entity.
|
32 |
+
"""
|
33 |
+
# IMPLEMENT_THIS
|
34 |
+
raise NotImplementedError(
|
35 |
+
"Please implement TokenClassificationPipeline __call__ function"
|
36 |
+
)
|