File size: 11,249 Bytes
2645d0f b0da662 2645d0f f64f86f 2645d0f f64f86f 2645d0f f64f86f 2645d0f f64f86f 2645d0f f64f86f 2645d0f 20dc1a4 2645d0f 51ff041 2645d0f 51ff041 2645d0f 51ff041 2645d0f 51ff041 2645d0f 51ff041 2645d0f b0da662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
license: other
license_name: tencent-hunyuan-a13b
license_link: https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/LICENSE
library_name: transformers
---
<p align="center">
<img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>
<p align="center">
🤗 <a href="https://huggingface.co/tencent/Hunyuan-A13B-Instruct"><b>Hugging Face</b></a> |
🖥️ <a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a> |
🕖 <a href="https://cloud.tencent.com/product/hunyuan"><b>HunyuanAPI</b></a> |
🕹️ <a href="https://hunyuan.tencent.com/?model=hunyuan-a13b"><b>Demo</b></a> |
🤖 <a href="https://modelscope.cn/models/Tencent-Hunyuan/Hunyuan-A13B-Instruct"><b>ModelScope</b></a>
</p>
<p align="center">
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf"><b>Technical Report</b> </a> |
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B"><b>GITHUB</b></a> |
<a href="https://cnb.cool/tencent/hunyuan/Hunyuan-A13B"><b>cnb.cool</b></a> |
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/LICENSE"><b>LICENSE</b></a>
</p>
Welcome to the official repository of **Hunyuan-A13B**, an innovative and open-source large language model (LLM) built on a fine-grained Mixture-of-Experts (MoE) architecture. Designed for efficiency and scalability, Hunyuan-A13B delivers cutting-edge performance with minimal computational overhead, making it an ideal choice for advanced reasoning and general-purpose applications, especially in resource-constrained environments.
## Model Introduction
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have achieved remarkable progress in natural language processing, computer vision, and scientific tasks. However, as model scales continue to expand, optimizing resource consumption while maintaining high performance has become a critical challenge. To address this, we have explored Mixture of Experts (MoE) architectures. The newly introduced Hunyuan-A13B model features a total of 80 billion parameters with 13 billion active parameters. It not only delivers high-performance results but also achieves optimal resource efficiency, successfully balancing computational power and resource utilization.
### Key Features and Advantages
- **Compact yet Powerful**: With only 13 billion active parameters (out of a total of 80 billion), the model delivers competitive performance on a wide range of benchmark tasks, rivaling much larger models.
- **Hybrid Inference Support**: Supports both fast and slow thinking modes, allowing users to flexibly choose according to their needs.
- **Ultra-Long Context Understanding**: Natively supports a 256K context window, maintaining stable performance on long-text tasks.
- **Enhanced Agent Capabilities**: Optimized for agent tasks, achieving leading results on benchmarks such as BFCL-v3 and τ-Bench.
- **Efficient Inference**: Utilizes Grouped Query Attention (GQA) and supports multiple quantization formats, enabling highly efficient inference.
### Why Choose Hunyuan-A13B?
As a powerful yet computationally efficient large model, Hunyuan-A13B is an ideal choice for researchers and developers seeking high performance under resource constraints. Whether for academic research, cost-effective AI solution development, or innovative application exploration, this model provides a robust foundation for advancement.
## Related News
* 2025.6.27 We have open-sourced **Hunyuan-A13B-Pretrain** , **Hunyuan-A13B-Instruct** , **Hunyuan-A13B-Instruct-FP8** , **Hunyuan-80B-A13B-Instruct-GPTQ-Int4** on Hugging Face.
<br>
## Benchmark
Note: The following benchmarks are evaluated by TRT-LLM-backend
| Model | Hunyuan-Large | Qwen2.5-72B | Qwen3-A22B | Hunyuan-A13B |
|------------------|---------------|--------------|-------------|---------------|
| MMLU | 88.40 | 86.10 | 87.81 | 88.17 |
| MMLU-Pro | 60.20 | 58.10 | 68.18 | 67.23 |
| MMLU-Redux | 87.47 | 83.90 | 87.40 | 87.67 |
| BBH | 86.30 | 85.80 | 88.87 | 87.56 |
| SuperGPQA | 38.90 | 36.20 | 44.06 | 41.32 |
| EvalPlus | 75.69 | 65.93 | 77.60 | 78.64 |
| MultiPL-E | 59.13 | 60.50 | 65.94 | 69.33 |
| MBPP | 72.60 | 76.00 | 81.40 | 83.86 |
| CRUX-I | 57.00 | 57.63 | - | 70.13 |
| CRUX-O | 60.63 | 66.20 | 79.00 | 77.00 |
| MATH | 69.80 | 62.12 | 71.84 | 72.35 |
| CMATH | 91.30 | 84.80 | - | 91.17 |
| GSM8k | 92.80 | 91.50 | 94.39 | 91.83 |
| GPQA | 25.18 | 45.90 | 47.47 | 49.12 |
Hunyuan-A13B-Instruct has achieved highly competitive performance across multiple benchmarks, particularly in mathematics, science, agent domains, and more. We compared it with several powerful models, and the results are shown below.
| Topic | Bench | OpenAI-o1-1217 | DeepSeek R1 | Qwen3-A22B | Hunyuan-A13B-Instruct |
|:-------------------:|:-----------------------------:|:-------------:|:------------:|:-----------:|:---------------------:|
| **Mathematics** | AIME 2024<br>AIME 2025<br>MATH | 74.3<br>79.2<br>96.4 | 79.8<br>70<br>94.9 | 85.7<br>81.5<br>94.0 | 87.3<br>76.8<br>94.3 |
| **Science** | GPQA-Diamond<br>OlympiadBench | 78<br>83.1 | 71.5<br>82.4 | 71.1<br>85.7 | 71.2<br>82.7 |
| **Coding** | Livecodebench<br>Fullstackbench<br>ArtifactsBench | 63.9<br>64.6<br>38.6 | 65.9<br>71.6<br>44.6 | 70.7<br>65.6<br>44.6 | 63.9<br>67.8<br>43 |
| **Reasoning** | BBH<br>DROP<br>ZebraLogic | 80.4<br>90.2<br>81 | 83.7<br>92.2<br>78.7 | 88.9<br>90.3<br>80.3 | 89.1<br>91.1<br>84.7 |
| **Instruction<br>Following** | IF-Eval<br>SysBench | 91.8<br>82.5 | 88.3<br>77.7 | 83.4<br>74.2 | 84.7<br>76.1 |
| **Text<br>Creation**| LengthCtrl<br>InsCtrl | 60.1<br>74.8 | 55.9<br>69 | 53.3<br>73.7 | 55.4<br>71.9 |
| **NLU** | ComplexNLU<br>Word-Task | 64.7<br>67.1 | 64.5<br>76.3 | 59.8<br>56.4 | 61.2<br>62.9 |
| **Agent** | BDCL v3<br> τ-Bench<br>ComplexFuncBench<br> C3-Bench | 67.8<br>60.4<br>47.6<br>58.8 | 56.9<br>43.8<br>41.1<br>55.3 | 70.8<br>44.6<br>40.6<br>51.7 | 78.3<br>54.7<br>61.2<br>63.5 |
## Use with transformers
The following code snippet shows how to use the transformers library to load and apply the model. It also demonstrates how to enable and disable the reasoning mode , and how to parse the reasoning process along with the final output.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re
model_name_or_path = os.environ['MODEL_PATH']
# model_name_or_path = "tencent/Hunyuan-A13B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto",trust_remote_code=True) # You may want to use bfloat16 and/or move to GPU here
messages = [
{"role": "user", "content": "Write a short summary of the benefits of regular exercise"},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True,return_tensors="pt",
enable_thinking=True # Toggle thinking mode (default: True)
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=4096)
output_text = tokenizer.decode(outputs[0])
think_pattern = r'<think>(.*?)</think>'
think_matches = re.findall(think_pattern, output_text, re.DOTALL)
answer_pattern = r'<answer>(.*?)</answer>'
answer_matches = re.findall(answer_pattern, output_text, re.DOTALL)
think_content = [match.strip() for match in think_matches][0]
answer_content = [match.strip() for match in answer_matches][0]
print(f"thinking_content:{think_content}\n\n")
print(f"answer_content:{answer_content}\n\n")
```
## Deployment
For deployment, you can use frameworks such as **vLLM**, **SGLang**, or **TensorRT-LLM** to serve the model and create an OpenAI-compatible API endpoint.
### vllm
#### Docker Image
We provide a pre-built Docker image containing vLLM 0.8.5 with full support for this model. The official vllm release is currently under development, **note: cuda 12.8 is require for this docker**.
- To get started:
https://hub.docker.com/r/hunyuaninfer/hunyuan-large/tags
```
docker pull hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-vllm
```
- Download Model file:
- Huggingface: will download automicly by vllm.
- ModelScope: `modelscope download --model Tencent-Hunyuan/Hunyuan-A13B-Instruct-FP8`
- Start the API server:
model download by huggingface:
```
docker run --privileged --user root --net=host --ipc=host \
-v ~/.cache:/root/.cache/ \
--gpus=all -it --entrypoint python hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-vllm
\
-m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000 \
--tensor-parallel-size 2 --dtype bfloat16 --kv-cache-dtype fp8 --model tencent/Hunyuan-A13B-Instruct-FP8 --trust-remote-code
```
model downloaded by modelscope:
```
docker run --privileged --user root --net=host --ipc=host \
-v ~/.cache/modelscope:/root/.cache/modelscope \
--gpus=all -it --entrypoint python hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-vllm \
-m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000 \
--tensor-parallel-size 2 --dtype bfloat16 --kv-cache-dtype fp8 \
--model /root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-A13B-Instruct-FP8 --trust_remote_code
```
### SGLang
#### Docker Image
We also provide a pre-built Docker image based on the latest version of SGLang.
To get started:
- Pull the Docker image
```
# china mirror
docker pull docker.cnb.cool/tencent/hunyuan/hunyuan-a13b:hunyuan-moe-A13B-sglang
# docker hub:
docker pull hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-sglang
```
- Start the API server:
```
docker run --gpus all \
--shm-size 32g \
-p 30000:30000 \
--ipc=host \
hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-sglang \
-m sglang.launch_server --model-path hunyuan/Hunyuan-A13B-Instruct-FP8 --tp 2 --trust-remote-code --host 0.0.0.0 --port 30000
```
## Contact Us
If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team . You can also contact us via email (hunyuan[email protected]). |