Delete vit_model.py
Browse files- vit_model.py +0 -1083
vit_model.py
DELETED
@@ -1,1083 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import types
|
3 |
-
import math
|
4 |
-
import torch
|
5 |
-
from torch import Tensor, nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from typing import List, Tuple, Optional, Union
|
8 |
-
from contextlib import contextmanager
|
9 |
-
from transformers.modeling_attn_mask_utils import (
|
10 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
11 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
12 |
-
_prepare_4d_causal_attention_mask,
|
13 |
-
)
|
14 |
-
from transformers.models.clip.configuration_clip import CLIPVisionConfig
|
15 |
-
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
16 |
-
from .modeling_hunyuan import HunYuanDecoderLayer, HunYuanRMSNorm
|
17 |
-
from .configuration_hunyuan import HunYuanConfig
|
18 |
-
|
19 |
-
|
20 |
-
def NaVitForward(input_ids, encoder_input, vit, image_tensors, images_pos, vit_input_resolution, im_start_id, im_end_id, image_token_id, anyres_vit_two_views, dtype):
|
21 |
-
# input_ids: (B, L)
|
22 |
-
# encoder_input: (L, B, E)
|
23 |
-
# image_tensors [[Tensor],...,[Tensor]]
|
24 |
-
# image_pos [[Tensor],...,[Tensor]]
|
25 |
-
# tokenizer = get_tokenizer()
|
26 |
-
b = len(input_ids)
|
27 |
-
img_embs = None
|
28 |
-
all_nums = sum([len(tensors) for tensors in image_tensors]) if image_tensors else 0
|
29 |
-
if all_nums != 0:
|
30 |
-
img_embs, img_batch_pos = vit(image_tensors)
|
31 |
-
else:
|
32 |
-
# when no input image, initialize a fake tensor
|
33 |
-
pad_nums = 1
|
34 |
-
image_tensors = [[torch.rand(3, vit_input_resolution, vit_input_resolution, dtype=dtype, device=torch.cuda.current_device()) for _ in range(pad_nums)]]
|
35 |
-
img_embs, img_batch_pos = vit(image_tensors)
|
36 |
-
|
37 |
-
encoder_input = encoder_input.clone()
|
38 |
-
if all_nums > 0:
|
39 |
-
assert len(images_pos) == len(img_batch_pos), \
|
40 |
-
(len(images_pos), len(img_batch_pos))
|
41 |
-
start_token_id = im_start_id
|
42 |
-
end_token_id = im_end_id
|
43 |
-
placeholder_id = image_token_id
|
44 |
-
for idx in range(len(images_pos)):
|
45 |
-
assert len(images_pos[idx]) == len(img_batch_pos[idx]), \
|
46 |
-
(len(images_pos[idx]), len(img_batch_pos[idx]))
|
47 |
-
for p_img_pos_in_batch, p_batch_img_pos in zip(img_batch_pos[idx], images_pos[idx]):
|
48 |
-
# the positions to be filled [s_start, s_end)
|
49 |
-
s_idx, s_start, s_end = p_img_pos_in_batch
|
50 |
-
current_embs = img_embs[s_idx, s_start:s_end]
|
51 |
-
im_s, im_e = p_batch_img_pos
|
52 |
-
assert len(current_embs) == im_e - im_s, \
|
53 |
-
(img_embs.shape, (s_start, s_end, s_idx), current_embs.shape, (im_s, im_e, idx))
|
54 |
-
if not anyres_vit_two_views:
|
55 |
-
assert input_ids[idx, im_s - 1] == start_token_id, \
|
56 |
-
input_ids[idx, im_s - 1]
|
57 |
-
assert input_ids[idx, im_e] == end_token_id, \
|
58 |
-
input_ids[idx, im_e]
|
59 |
-
assert (input_ids[idx, im_s:im_e] == placeholder_id).all(), \
|
60 |
-
f'The tokens to be filled are not the placeholder_id {placeholder_id}: {(input_ids[idx, im_s:im_e] == placeholder_id).sum()} vs {im_e - im_s}'
|
61 |
-
encoder_input[idx, im_s:im_e] = current_embs
|
62 |
-
else:
|
63 |
-
# when no input image, to mask vit value
|
64 |
-
vit_mask = torch.zeros([1, img_embs.shape[0]], device=torch.cuda.current_device())
|
65 |
-
current_embs = img_embs[0, :]
|
66 |
-
encoder_input[0, 1:img_embs.shape[0] + 1] = encoder_input[0, 1:img_embs.shape[0] + 1] * (1 - vit_mask) + current_embs * vit_mask
|
67 |
-
return encoder_input, input_ids
|
68 |
-
|
69 |
-
|
70 |
-
def VitForward(input_ids, encoder_input, vit, vit_linear_encoder, image_tensors, images_pos, vit_input_resolution, vit_mapping_type, vit_patch, vit_token):
|
71 |
-
vit_patch_mlp = (vit_patch > 1 and vit_mapping_type == 'mlp') or vit_patch == 0
|
72 |
-
|
73 |
-
b = len(input_ids)
|
74 |
-
if images_pos is None:
|
75 |
-
images_pos = torch.ones([len(input_ids), 1, 3])
|
76 |
-
images_pos[:, :, 1] = images_pos[:, :, 1]*(vit_token + 1)
|
77 |
-
images_pos = images_pos.long()
|
78 |
-
|
79 |
-
real_image_nums = []
|
80 |
-
image_tensors = image_tensors.view(b, -1, 3, vit_input_resolution, vit_input_resolution)
|
81 |
-
real_images = []
|
82 |
-
|
83 |
-
all_nums = 0
|
84 |
-
img_index = []
|
85 |
-
for s in range(len(images_pos)):
|
86 |
-
real_image_num = 0
|
87 |
-
for (im_s, im_e,index) in images_pos[s]:
|
88 |
-
if im_s == -1:
|
89 |
-
break
|
90 |
-
real_image_num += 1
|
91 |
-
all_nums += 1
|
92 |
-
img_index.append(index)
|
93 |
-
|
94 |
-
real_image_nums.append(real_image_num)
|
95 |
-
real_images.append(image_tensors[s][:real_image_num])
|
96 |
-
|
97 |
-
if vit_patch == 1:
|
98 |
-
img_index = None
|
99 |
-
|
100 |
-
if all_nums == 0:
|
101 |
-
# when no input image, initialize a fake tensor
|
102 |
-
img_input = torch.rand(b, 3, vit_input_resolution, vit_input_resolution).cuda().type(image_tensors.dtype)
|
103 |
-
img_embs = vit(img_input)
|
104 |
-
img_embs = vit_linear_encoder(img_embs)
|
105 |
-
else:
|
106 |
-
img_input = torch.cat(real_images)
|
107 |
-
img_embs = vit(img_input, img_index = img_index)
|
108 |
-
img_embs = vit_linear_encoder(img_embs)
|
109 |
-
|
110 |
-
encoder_input = encoder_input.clone()
|
111 |
-
start = 0
|
112 |
-
if all_nums > 0:
|
113 |
-
for s, real_image_len in enumerate(real_image_nums):
|
114 |
-
current_embs = img_embs[start:start + real_image_len, :] #[30, 256, 4096]
|
115 |
-
for ss in range(current_embs.shape[0]):
|
116 |
-
im_s, im_e, index = images_pos[s, ss]
|
117 |
-
# 子图特征更少
|
118 |
-
if index > 0 and vit_patch_mlp:
|
119 |
-
encoder_input[s, im_s:im_e,] = current_embs[ss, :(im_e-im_s)]
|
120 |
-
else:
|
121 |
-
encoder_input[s, im_s:im_e] = current_embs[ss, :]
|
122 |
-
start = start + real_image_len
|
123 |
-
else:
|
124 |
-
# when no input image, to mask vit value
|
125 |
-
for s in range(b):
|
126 |
-
vit_mask = torch.zeros([vit_token, 1]).cuda()
|
127 |
-
current_embs = img_embs[:, start:start + 1]
|
128 |
-
encoder_input[1:vit_token + 1, s] = encoder_input[1:vit_token + 1, s] * (1 - vit_mask) + current_embs[:, 0, :] * vit_mask
|
129 |
-
start = start + 1
|
130 |
-
return encoder_input, input_ids
|
131 |
-
|
132 |
-
|
133 |
-
def group_images_by_max_seq_len(
|
134 |
-
images: List[List[Tensor]], patch_size: int,
|
135 |
-
max_seq_len: int, adaptor_patch_size: int,
|
136 |
-
add_cls_token: bool = False) -> List[List[Tensor]]:
|
137 |
-
|
138 |
-
groups = []
|
139 |
-
group = []
|
140 |
-
pos_groups = []
|
141 |
-
seq_len = 0
|
142 |
-
num_images = 0
|
143 |
-
for image_list in images:
|
144 |
-
pos_group = []
|
145 |
-
for image in image_list:
|
146 |
-
num_images += 1
|
147 |
-
assert isinstance(image, Tensor)
|
148 |
-
|
149 |
-
image_dims = image.shape[-2:]
|
150 |
-
ph, pw = map(lambda t: t // patch_size, image_dims)
|
151 |
-
|
152 |
-
image_seq_len = (ph * pw)
|
153 |
-
new_image_seq_len = image_seq_len
|
154 |
-
grouped_len = seq_len + image_seq_len
|
155 |
-
if add_cls_token:
|
156 |
-
new_image_seq_len += 1
|
157 |
-
grouped_len += num_images
|
158 |
-
|
159 |
-
assert new_image_seq_len <= max_seq_len, f'image with dimensions {image_dims} exceeds maximum sequence length'
|
160 |
-
|
161 |
-
if grouped_len > max_seq_len:
|
162 |
-
groups.append(group)
|
163 |
-
group = []
|
164 |
-
seq_len = 0
|
165 |
-
num_images = 1
|
166 |
-
|
167 |
-
group.append(image)
|
168 |
-
start = seq_len // (adaptor_patch_size * adaptor_patch_size)
|
169 |
-
end = start + image_seq_len//(adaptor_patch_size * adaptor_patch_size)
|
170 |
-
batch_idx = len(groups)
|
171 |
-
pos_group.append([batch_idx, start, end])
|
172 |
-
seq_len += image_seq_len
|
173 |
-
pos_groups.append(pos_group)
|
174 |
-
|
175 |
-
if len(group) > 0:
|
176 |
-
groups.append(group)
|
177 |
-
|
178 |
-
return groups, pos_groups
|
179 |
-
|
180 |
-
|
181 |
-
class AnyResCLIPVisionEmbeddings(nn.Module):
|
182 |
-
def __init__(self, config: CLIPVisionConfig):
|
183 |
-
super().__init__()
|
184 |
-
|
185 |
-
self.config = config
|
186 |
-
# self.sparse_attn_mask = args.sparse_attn_mask
|
187 |
-
# self.use_flash_attn = args.use_flash_attn
|
188 |
-
self.embed_dim = config.hidden_size
|
189 |
-
self.image_size = config.max_image_size
|
190 |
-
self.patch_size = config.patch_size
|
191 |
-
self.max_seq_len = config.max_vit_seq_len
|
192 |
-
self.adaptor_patch_size = config.adaptor_patch_size
|
193 |
-
self.anyres_vit_two_views = config.anyres_vit_two_views
|
194 |
-
self.vit_add_patchemb_bias = config.vit_add_patchemb_bias
|
195 |
-
self.vit_remove_prenorm = config.vit_remove_prenorm
|
196 |
-
|
197 |
-
self.patch_embedding = nn.Conv2d(
|
198 |
-
in_channels=config.num_channels,
|
199 |
-
out_channels=self.embed_dim,
|
200 |
-
kernel_size=self.patch_size,
|
201 |
-
stride=self.patch_size,
|
202 |
-
bias=self.vit_add_patchemb_bias,
|
203 |
-
)
|
204 |
-
|
205 |
-
self.num_patches = (self.image_size // self.patch_size) ** 2
|
206 |
-
self.skip_cls_token = True
|
207 |
-
|
208 |
-
# add interpolate_pos_encoding
|
209 |
-
if self.anyres_vit_two_views:
|
210 |
-
self.num_positions = self.num_patches
|
211 |
-
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim) * 0.02)
|
212 |
-
else:
|
213 |
-
self.num_positions = self.num_patches + 1
|
214 |
-
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
215 |
-
# self.position_ids = torch.arange(self.num_positions).expand((1, -1))
|
216 |
-
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
217 |
-
|
218 |
-
if not self.vit_remove_prenorm:
|
219 |
-
self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
220 |
-
|
221 |
-
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
222 |
-
"""
|
223 |
-
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
224 |
-
resolution images.
|
225 |
-
|
226 |
-
Source:
|
227 |
-
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
228 |
-
"""
|
229 |
-
num_patches = embeddings.shape[1]
|
230 |
-
position_embeddings = self.position_embedding(self.position_ids)
|
231 |
-
patch_pos_embed = position_embeddings[:, 1:]
|
232 |
-
num_positions = position_embeddings.shape[1] - 1
|
233 |
-
if num_patches == num_positions and height == width:
|
234 |
-
return patch_pos_embed
|
235 |
-
# class_pos_embed = position_embeddings[:, 0]
|
236 |
-
dim = embeddings.shape[-1]
|
237 |
-
h0 = height // self.patch_size
|
238 |
-
w0 = width // self.patch_size
|
239 |
-
# we add a small number to avoid floating point error in the interpolation
|
240 |
-
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
241 |
-
h0, w0 = h0 + 0.1, w0 + 0.1
|
242 |
-
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
243 |
-
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
244 |
-
raw_type = patch_pos_embed.dtype
|
245 |
-
patch_pos_embed = nn.functional.interpolate(
|
246 |
-
patch_pos_embed.to(torch.float32, non_blocking=True),
|
247 |
-
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
|
248 |
-
mode="bilinear",
|
249 |
-
align_corners=False,
|
250 |
-
)
|
251 |
-
patch_pos_embed = patch_pos_embed.to(raw_type, non_blocking=True)
|
252 |
-
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
|
253 |
-
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
254 |
-
return patch_pos_embed
|
255 |
-
|
256 |
-
def rescale_positional_embedding(self, out_size):
|
257 |
-
h, w = out_size
|
258 |
-
pos_embed_shape = int((self.position_embedding.shape[1]) ** 0.5)
|
259 |
-
if (h, w) == (pos_embed_shape, pos_embed_shape):
|
260 |
-
return self.position_embedding
|
261 |
-
rescaled_positional_embedding = \
|
262 |
-
self.position_embedding.new_zeros(1, h*w, self.position_embedding.shape[2])
|
263 |
-
pe_2d = self.position_embedding[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape)
|
264 |
-
pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w)
|
265 |
-
rescaled_positional_embedding[0] = pe_2d.T.contiguous()
|
266 |
-
return rescaled_positional_embedding
|
267 |
-
|
268 |
-
def forward_single(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
269 |
-
if pixel_values.ndim == 3:
|
270 |
-
pixel_values = pixel_values[None]
|
271 |
-
batch_size, num_channels, height, width = pixel_values.shape
|
272 |
-
|
273 |
-
if self.anyres_vit_two_views:
|
274 |
-
# padding
|
275 |
-
pad_h = (self.patch_size - height % self.patch_size) % self.patch_size
|
276 |
-
pad_w = (self.patch_size - width % self.patch_size) % self.patch_size
|
277 |
-
pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
|
278 |
-
|
279 |
-
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
280 |
-
b, c, h, w = patch_embeds.shape
|
281 |
-
|
282 |
-
# (b, hw, c)
|
283 |
-
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
284 |
-
if self.anyres_vit_two_views:
|
285 |
-
embeddings = patch_embeds + self.rescale_positional_embedding(out_size=(h, w))
|
286 |
-
else:
|
287 |
-
embeddings = patch_embeds + self.interpolate_pos_encoding(patch_embeds, height, width)
|
288 |
-
if not self.vit_remove_prenorm:
|
289 |
-
embeddings = self.pre_layernorm(embeddings)
|
290 |
-
return embeddings, (h, w)
|
291 |
-
|
292 |
-
def forward(self, images: List[List[Tensor]]):
|
293 |
-
'''
|
294 |
-
Input:
|
295 |
-
images: List[List[Tensor]]
|
296 |
-
|
297 |
-
Return:
|
298 |
-
embeddings: Tensor (B, L, E)
|
299 |
-
attn_mask: Tensor (B, L, 2)
|
300 |
-
pos_groups: List[List[(batch_idx, start, end)]]
|
301 |
-
'''
|
302 |
-
batched_images, pos_groups = group_images_by_max_seq_len(
|
303 |
-
images, self.patch_size, self.max_seq_len, self.adaptor_patch_size, add_cls_token=not self.skip_cls_token)
|
304 |
-
max_seq_len = self.max_seq_len
|
305 |
-
|
306 |
-
# batched_images is a list of a list
|
307 |
-
B = len(batched_images)
|
308 |
-
L = max_seq_len
|
309 |
-
E = self.embed_dim
|
310 |
-
|
311 |
-
embeddings = torch.zeros(B, L, E, dtype=self.config.torch_dtype, requires_grad=True).cuda(non_blocking=True)
|
312 |
-
attn_mask = embeddings.new_full((B, 1, L, L), False, dtype=torch.bool) # True presents compute
|
313 |
-
assert len(images) == len(pos_groups), (len(images), len(pos_groups))
|
314 |
-
|
315 |
-
batch_images = []
|
316 |
-
batch_pos = []
|
317 |
-
for images_i, pos_group in zip(images, pos_groups):
|
318 |
-
assert len(images_i) == len(pos_group), (len(images_i), len(pos_group))
|
319 |
-
for image, pos in zip(images_i, pos_group):
|
320 |
-
batch_idx, start, end = pos
|
321 |
-
a2 = self.adaptor_patch_size ** 2
|
322 |
-
# recover the real number of the input image tokens
|
323 |
-
start *= a2
|
324 |
-
end *= a2
|
325 |
-
emb, _ = self.forward_single(image)
|
326 |
-
assert emb.ndim == 3, '(B, L, E)'
|
327 |
-
embeddings[batch_idx, start:end] = emb
|
328 |
-
attn_mask[batch_idx, :, start:end, start:end] = True
|
329 |
-
return embeddings, attn_mask, pos_groups
|
330 |
-
|
331 |
-
|
332 |
-
class CLIPVisionEmbeddings(nn.Module):
|
333 |
-
def __init__(self, config: CLIPVisionConfig, add_pre_layernorm=False, skip_cls_token=True, vit_patch=1):
|
334 |
-
super().__init__()
|
335 |
-
self.config = config
|
336 |
-
self.embed_dim = config.hidden_size
|
337 |
-
self.image_size = config.image_size
|
338 |
-
self.image_size = config.vit_input_resolution
|
339 |
-
self.patch_size = config.patch_size
|
340 |
-
|
341 |
-
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
342 |
-
|
343 |
-
self.patch_embedding = nn.Conv2d(
|
344 |
-
in_channels=config.num_channels,
|
345 |
-
out_channels=self.embed_dim,
|
346 |
-
kernel_size=self.patch_size,
|
347 |
-
stride=self.patch_size,
|
348 |
-
bias=False,
|
349 |
-
)
|
350 |
-
|
351 |
-
self.num_patches = (self.image_size // self.patch_size) ** 2
|
352 |
-
|
353 |
-
self.skip_cls_token = skip_cls_token
|
354 |
-
|
355 |
-
self.num_positions = self.num_patches + 1
|
356 |
-
|
357 |
-
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
358 |
-
if vit_patch > 1:
|
359 |
-
self.position_embedding = nn.Embedding(self.num_patches * (vit_patch ** 2 + 1) + 1, self.embed_dim)
|
360 |
-
# 0 支持最大16张图,目前写死了,如需其他的需要额外定义参数
|
361 |
-
elif vit_patch == 0:
|
362 |
-
self.position_embedding = nn.Embedding(self.num_patches * (16 ** 2 + 1) + 1, self.embed_dim)
|
363 |
-
else:
|
364 |
-
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
365 |
-
|
366 |
-
if add_pre_layernorm:
|
367 |
-
self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
368 |
-
else:
|
369 |
-
self.pre_layernorm = None
|
370 |
-
|
371 |
-
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
372 |
-
"""
|
373 |
-
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
374 |
-
resolution images.
|
375 |
-
|
376 |
-
Source:
|
377 |
-
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
378 |
-
"""
|
379 |
-
num_patches = embeddings.shape[1] - 1
|
380 |
-
position_embeddings = self.position_embedding(self.position_ids)
|
381 |
-
num_positions = position_embeddings.shape[1] - 1
|
382 |
-
if num_patches == num_positions and height == width:
|
383 |
-
return position_embeddings
|
384 |
-
class_pos_embed = position_embeddings[:, 0]
|
385 |
-
patch_pos_embed = position_embeddings[:, 1:]
|
386 |
-
dim = embeddings.shape[-1]
|
387 |
-
h0 = height // self.config.patch_size
|
388 |
-
w0 = width // self.config.patch_size
|
389 |
-
# we add a small number to avoid floating point error in the interpolation
|
390 |
-
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
391 |
-
h0, w0 = h0 + 0.1, w0 + 0.1
|
392 |
-
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
393 |
-
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
394 |
-
raw_type = patch_pos_embed.dtype
|
395 |
-
patch_pos_embed = nn.functional.interpolate(
|
396 |
-
patch_pos_embed.float(),
|
397 |
-
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
|
398 |
-
mode="bicubic",
|
399 |
-
align_corners=False,
|
400 |
-
)
|
401 |
-
# print(patch_pos_embed.shape)
|
402 |
-
patch_pos_embed = patch_pos_embed.to(raw_type)
|
403 |
-
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
|
404 |
-
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
405 |
-
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
406 |
-
|
407 |
-
|
408 |
-
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False, img_index=None) -> torch.Tensor:
|
409 |
-
batch_size, num_channels, height, width = pixel_values.shape
|
410 |
-
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
411 |
-
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
412 |
-
if self.skip_cls_token:
|
413 |
-
embeddings = patch_embeds
|
414 |
-
if img_index is None:
|
415 |
-
position_ids = self.position_ids[:,1:]
|
416 |
-
embeddings = embeddings + self.position_embedding(position_ids)
|
417 |
-
else:
|
418 |
-
position_ids = (torch.tensor(img_index).cuda() * (self.num_positions - 1)).unsqueeze(1).repeat(1, self.num_positions - 1) \
|
419 |
-
+ self.position_ids.expand(batch_size, -1)[:, 1:]
|
420 |
-
embeddings = embeddings + self.position_embedding(position_ids)
|
421 |
-
else:
|
422 |
-
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
423 |
-
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
424 |
-
if interpolate_pos_encoding:
|
425 |
-
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
426 |
-
else:
|
427 |
-
if img_index is None:
|
428 |
-
embeddings = embeddings + self.position_embedding(self.position_ids)
|
429 |
-
else:
|
430 |
-
position_ids = self.position_ids.expand(batch_size,-1)[:,0].unsqueeze(1)
|
431 |
-
new_position = (torch.tensor(img_index).cuda() * (self.num_positions -1)).unsqueeze(1).repeat(1,self.num_positions-1) + self.position_ids.expand(batch_size,-1)[:,1:]
|
432 |
-
position_ids = torch.cat([position_ids,new_position],dim=1)
|
433 |
-
embeddings = embeddings + self.position_embedding(position_ids)
|
434 |
-
if self.pre_layernorm is not None:
|
435 |
-
embeddings = self.pre_layernorm(embeddings)
|
436 |
-
return embeddings
|
437 |
-
|
438 |
-
|
439 |
-
class NaVitTransformer(nn.Module):
|
440 |
-
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
|
441 |
-
super().__init__()
|
442 |
-
self.config = config
|
443 |
-
self.vit_config = vit_config
|
444 |
-
with self.prepare_args(config, vit_config):
|
445 |
-
self._use_sdpa = config._attn_implementation == "sdpa"
|
446 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
447 |
-
self.layers = nn.ModuleList(
|
448 |
-
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
449 |
-
)
|
450 |
-
|
451 |
-
@contextmanager
|
452 |
-
def prepare_args(self, config, vit_config):
|
453 |
-
hidden_act = config.hidden_act
|
454 |
-
hidden_size = config.hidden_size
|
455 |
-
ffn_hidden_size = config.intermediate_size
|
456 |
-
num_attention_heads = config.num_attention_heads
|
457 |
-
num_key_value_heads = config.num_key_value_heads
|
458 |
-
attention_head_dim = config.attention_head_dim
|
459 |
-
use_qk_norm = config.use_qk_norm
|
460 |
-
use_rotary_pos_emb = config.use_rotary_pos_emb
|
461 |
-
num_hidden_layers = config.num_hidden_layers
|
462 |
-
rms_norm_eps = config.rms_norm_eps
|
463 |
-
attention_dropout = config.attention_dropout
|
464 |
-
# hidden_dropout = config.hidden_dropout
|
465 |
-
norm_type = config.norm_type
|
466 |
-
attention_bias = config.attention_bias
|
467 |
-
mlp_bias = config.mlp_bias
|
468 |
-
use_mla = config.use_mla
|
469 |
-
num_experts = config.num_experts
|
470 |
-
_attn_implementation = config._attn_implementation
|
471 |
-
|
472 |
-
config.hidden_act = vit_config.hidden_act
|
473 |
-
config.hidden_size = vit_config.hidden_size
|
474 |
-
config.intermediate_size = vit_config.intermediate_size
|
475 |
-
config.num_attention_heads = vit_config.num_attention_heads
|
476 |
-
config.num_key_value_heads = None
|
477 |
-
config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
|
478 |
-
config.use_qk_norm = False
|
479 |
-
config.use_rotary_pos_emb = False
|
480 |
-
config.num_hidden_layers = vit_config.num_hidden_layers
|
481 |
-
config.rms_norm_eps = vit_config.layer_norm_eps
|
482 |
-
config.attention_dropout = vit_config.attention_dropout
|
483 |
-
# config.hidden_dropout = vit_config.hidden_dropout
|
484 |
-
config.norm_type = config.vit_norm_type
|
485 |
-
config.attention_bias = True
|
486 |
-
config.mlp_bias = True
|
487 |
-
config.use_mla = False
|
488 |
-
config.num_experts = 1
|
489 |
-
config._attn_implementation = "eager"
|
490 |
-
|
491 |
-
yield
|
492 |
-
config.hidden_act = hidden_act
|
493 |
-
config.hidden_size = hidden_size
|
494 |
-
config.intermediate_size = ffn_hidden_size
|
495 |
-
config.num_attention_heads = num_attention_heads
|
496 |
-
config.num_key_value_heads = num_key_value_heads
|
497 |
-
config.attention_head_dim = attention_head_dim
|
498 |
-
config.use_qk_norm = use_qk_norm
|
499 |
-
config.use_rotary_pos_emb = use_rotary_pos_emb
|
500 |
-
config.num_hidden_layers = num_hidden_layers
|
501 |
-
config.rms_norm_eps = rms_norm_eps
|
502 |
-
config.attention_dropout = attention_dropout
|
503 |
-
# config.hidden_dropout = hidden_dropout
|
504 |
-
config.attention_bias = attention_bias
|
505 |
-
config.mlp_bias = mlp_bias
|
506 |
-
config.norm_type = norm_type
|
507 |
-
config.use_mla = use_mla
|
508 |
-
config.num_experts = num_experts
|
509 |
-
config._attn_implementation = _attn_implementation
|
510 |
-
|
511 |
-
def forward(
|
512 |
-
self,
|
513 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
514 |
-
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
515 |
-
|
516 |
-
hidden_states, attention_mask, img_pos = self.embeddings(pixel_values)
|
517 |
-
attention_mask = attention_mask.int()
|
518 |
-
batch_size, seq_length, _ = hidden_states.shape
|
519 |
-
past_key_values_length = 0
|
520 |
-
|
521 |
-
if self._use_flash_attention_2:
|
522 |
-
# 2d mask is passed through the layers
|
523 |
-
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
524 |
-
elif self._use_sdpa:
|
525 |
-
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
526 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
527 |
-
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
528 |
-
attention_mask,
|
529 |
-
(batch_size, seq_length),
|
530 |
-
hidden_states,
|
531 |
-
past_key_values_length,
|
532 |
-
)
|
533 |
-
else:
|
534 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
535 |
-
attention_mask,
|
536 |
-
(batch_size, seq_length),
|
537 |
-
hidden_states,
|
538 |
-
past_key_values_length,
|
539 |
-
)
|
540 |
-
|
541 |
-
for layer_idx, decoder_layer in enumerate(self.layers):
|
542 |
-
layer_outputs = decoder_layer(
|
543 |
-
hidden_states,
|
544 |
-
attention_mask=attention_mask
|
545 |
-
)
|
546 |
-
hidden_states = layer_outputs[0]
|
547 |
-
|
548 |
-
return hidden_states, img_pos
|
549 |
-
|
550 |
-
|
551 |
-
class AnyResVitTransformer(NaVitTransformer):
|
552 |
-
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig, anyres_vit_max_image_size):
|
553 |
-
super().__init__(config, vit_config)
|
554 |
-
old_anyres_vit_max_image_size = vit_config.max_image_size
|
555 |
-
anyres_vit_max_image_size = anyres_vit_max_image_size or old_anyres_vit_max_image_size
|
556 |
-
vit_config.max_image_size = anyres_vit_max_image_size
|
557 |
-
vit_config.torch_dtype = config.torch_dtype
|
558 |
-
vit_config.anyres_vit_two_views = config.anyres_vit_two_views
|
559 |
-
vit_config.vit_remove_prenorm = config.vit_remove_prenorm
|
560 |
-
vit_config.vit_add_patchemb_bias = config.vit_add_patchemb_bias
|
561 |
-
self.embeddings = AnyResCLIPVisionEmbeddings(vit_config)
|
562 |
-
vit_config.max_image_size = old_anyres_vit_max_image_size
|
563 |
-
|
564 |
-
def fix_embeddings_fn(self, pixel_values):
|
565 |
-
# (B, L, E)
|
566 |
-
embeddings, hw = self.embeddings.forward_single(pixel_values)
|
567 |
-
embeddings = self.embeddings.pre_layernorm(embeddings)
|
568 |
-
return embeddings
|
569 |
-
|
570 |
-
|
571 |
-
class CLIPVisionTransformer(nn.Module):
|
572 |
-
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
|
573 |
-
super().__init__()
|
574 |
-
embed_dim = vit_config.hidden_size
|
575 |
-
|
576 |
-
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=vit_config.layer_norm_eps)
|
577 |
-
self.embeddings = CLIPVisionEmbeddings(vit_config, skip_cls_token=config.skip_cls_token, vit_patch=config.vit_patch)
|
578 |
-
|
579 |
-
with self.prepare_args(config, vit_config):
|
580 |
-
self.layers = nn.ModuleList(
|
581 |
-
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
582 |
-
)
|
583 |
-
|
584 |
-
@contextmanager
|
585 |
-
def prepare_args(self, config, vit_config):
|
586 |
-
hidden_act = config.hidden_act
|
587 |
-
hidden_size = config.hidden_size
|
588 |
-
ffn_hidden_size = config.intermediate_size
|
589 |
-
num_attention_heads = config.num_attention_heads
|
590 |
-
num_key_value_heads = config.num_key_value_heads
|
591 |
-
attention_head_dim = config.attention_head_dim
|
592 |
-
use_qk_norm = config.use_qk_norm
|
593 |
-
use_rotary_pos_emb = config.use_rotary_pos_emb
|
594 |
-
num_hidden_layers = config.num_hidden_layers
|
595 |
-
rms_norm_eps = config.rms_norm_eps
|
596 |
-
attention_dropout = config.attention_dropout
|
597 |
-
# hidden_dropout = config.hidden_dropout
|
598 |
-
norm_type = config.norm_type
|
599 |
-
attention_bias = config.attention_bias
|
600 |
-
mlp_bias = config.mlp_bias
|
601 |
-
use_mla = config.use_mla
|
602 |
-
num_experts = config.num_experts
|
603 |
-
_attn_implementation = config._attn_implementation
|
604 |
-
|
605 |
-
config.hidden_act = vit_config.hidden_act
|
606 |
-
config.hidden_size = vit_config.hidden_size
|
607 |
-
config.intermediate_size = vit_config.intermediate_size
|
608 |
-
config.num_attention_heads = vit_config.num_attention_heads
|
609 |
-
config.num_key_value_heads = None
|
610 |
-
config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
|
611 |
-
config.use_qk_norm = False
|
612 |
-
config.use_rotary_pos_emb = False
|
613 |
-
config.num_hidden_layers = vit_config.num_hidden_layers
|
614 |
-
config.rms_norm_eps = vit_config.layer_norm_eps
|
615 |
-
config.attention_dropout = vit_config.attention_dropout
|
616 |
-
# config.hidden_dropout = 0.0
|
617 |
-
config.norm_type = "fused"
|
618 |
-
config.attention_bias = True
|
619 |
-
config.mlp_bias = True
|
620 |
-
config.use_mla = False
|
621 |
-
config.num_experts = 1
|
622 |
-
config._attn_implementation = "eager"
|
623 |
-
|
624 |
-
yield
|
625 |
-
|
626 |
-
config.hidden_act = hidden_act
|
627 |
-
config.hidden_size = hidden_size
|
628 |
-
config.intermediate_size = ffn_hidden_size
|
629 |
-
config.num_attention_heads = num_attention_heads
|
630 |
-
config.num_key_value_heads = num_key_value_heads
|
631 |
-
config.attention_head_dim = attention_head_dim
|
632 |
-
config.use_qk_norm = use_qk_norm
|
633 |
-
config.use_rotary_pos_emb = use_rotary_pos_emb
|
634 |
-
config.num_hidden_layers = num_hidden_layers
|
635 |
-
config.rms_norm_eps = rms_norm_eps
|
636 |
-
config.attention_dropout = attention_dropout
|
637 |
-
# config.hidden_dropout = hidden_dropout
|
638 |
-
config.norm_type = norm_type
|
639 |
-
config.attention_bias = attention_bias
|
640 |
-
config.mlp_bias = mlp_bias
|
641 |
-
config.use_mla = use_mla
|
642 |
-
config.num_experts = num_experts
|
643 |
-
config._attn_implementation = _attn_implementation
|
644 |
-
|
645 |
-
def forward(
|
646 |
-
self,
|
647 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
648 |
-
interpolate_pos_encoding: Optional[bool] = None,
|
649 |
-
img_index=None
|
650 |
-
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
651 |
-
r"""
|
652 |
-
Returns:
|
653 |
-
|
654 |
-
"""
|
655 |
-
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, img_index=img_index)
|
656 |
-
hidden_states = self.pre_layrnorm(hidden_states)
|
657 |
-
batch = hidden_states.shape[0]
|
658 |
-
seq_len = hidden_states.shape[1]
|
659 |
-
device = hidden_states.device
|
660 |
-
attention_mask = torch.ones(batch, 1, seq_len, seq_len, dtype=torch.float32, device=device)
|
661 |
-
|
662 |
-
for layer_idx, decoder_layer in enumerate(self.layers):
|
663 |
-
layer_outputs = decoder_layer(
|
664 |
-
hidden_states,
|
665 |
-
attention_mask=attention_mask
|
666 |
-
)
|
667 |
-
hidden_states = layer_outputs[0]
|
668 |
-
|
669 |
-
return hidden_states
|
670 |
-
|
671 |
-
|
672 |
-
class Vit(torch.nn.Module):
|
673 |
-
def __init__(self, config, resampler_token=64, pool_rate=2):
|
674 |
-
super().__init__()
|
675 |
-
self.config = config
|
676 |
-
self.vit_mapping_type = config.vit_mapping_type
|
677 |
-
self.anyres_vit_max_image_size = config.anyres_vit_max_image_size
|
678 |
-
self.skip_cls_token = config.skip_cls_token
|
679 |
-
self.pool_rate = pool_rate
|
680 |
-
self.vit_type = self.config.vit_type
|
681 |
-
self.anyres_vit_two_views = self.config.anyres_vit_two_views
|
682 |
-
if self.vit_type in ['Vit-g', 'Vit-bigG', 'NaVit', 'EvaVit', 'AnyResVit']:
|
683 |
-
self.img_init(resampler_token, config.vit_input_resolution, config.vit_mapping_type, pool_rate)
|
684 |
-
else:
|
685 |
-
raise NotImplementedError(f"unsupported vit type: {self.vit_type}")
|
686 |
-
|
687 |
-
def img_init(self, resampler_token=64, vit_input_resolution=224, vit_mapping_type='resampler', pool_rate=2):
|
688 |
-
if self.vit_type == 'AnyResVit':
|
689 |
-
vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
|
690 |
-
self.vit_config = types.SimpleNamespace(**vit_config["vision_config"])
|
691 |
-
self.vit_config.image_size = vit_input_resolution
|
692 |
-
self.vit = AnyResVitTransformer(self.config, self.vit_config, self.anyres_vit_max_image_size)
|
693 |
-
elif self.vit_type == 'Vit-g':
|
694 |
-
vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
|
695 |
-
self.vit_config = types.SimpleNamespace(**{**vit_config["vision_config_dict"],**vit_config["vision_config"]})
|
696 |
-
self.vit_config.vit_input_resolution = vit_input_resolution
|
697 |
-
self.vit = CLIPVisionTransformer(self.config, self.vit_config)
|
698 |
-
else:
|
699 |
-
assert False, "other vit_types are not supported"
|
700 |
-
|
701 |
-
if self.vit_mapping_type == 'simple_conv_mlp':
|
702 |
-
self.perceive = SimpleConvMlp(self.vit_config.hidden_size, self.config.hidden_size, self.config.anyres_pooling_size, \
|
703 |
-
self.config.vit_used_rms_norm, self.config.rms_norm_eps, poolmlp=False, twoview=True)
|
704 |
-
elif self.vit_mapping_type == 'oryx_mlp':
|
705 |
-
self.perceive = OryxMLPv2(self.vit_config.hidden_size, self.config.hidden_size, twoview=True, use_pe=False)
|
706 |
-
elif self.vit_mapping_type == 'mlp':
|
707 |
-
self.mlp_depth = 2
|
708 |
-
# one mlp layer already in gpt_model.py
|
709 |
-
mlp_hidden_size = self.vit_config.hidden_size
|
710 |
-
if self.vit_type in ['NaVit', 'EvaVit']:
|
711 |
-
mlp_hidden_size *= self.vit_config.adaptor_patch_size **2
|
712 |
-
if self.mlp_depth > 1:
|
713 |
-
mlp_modules = [torch.nn.Linear(mlp_hidden_size, self.config.hidden_size), torch.nn.GELU()]
|
714 |
-
if self.vit_type in ['NaVit', 'EvaVit']:
|
715 |
-
for _ in range(1, self.mlp_depth):
|
716 |
-
mlp_modules.append(torch.nn.Linear(self.config.hidden_size, self.config.hidden_size))
|
717 |
-
mlp_modules.append(torch.nn.GELU())
|
718 |
-
self.perceive = torch.nn.Sequential(*mlp_modules)
|
719 |
-
else:
|
720 |
-
assert False, "other vit_mapping_types are not supported"
|
721 |
-
|
722 |
-
self.vit_patch_mlp = (self.config.vit_patch > 1 and self.vit_mapping_type == 'mlp') or self.config.vit_patch == 0
|
723 |
-
for name, param in self.named_parameters():
|
724 |
-
setattr(param, "is_vit_param", True)
|
725 |
-
|
726 |
-
def forward(self, images, img_index=None):
|
727 |
-
if self.vit_type in ['AnyResVit']:
|
728 |
-
dtype = self.config.torch_dtype
|
729 |
-
device = torch.cuda.current_device()
|
730 |
-
|
731 |
-
images_size = []
|
732 |
-
for i in range(len(images)):
|
733 |
-
images_size.append([])
|
734 |
-
for j in range(len(images[i])):
|
735 |
-
images_size[i].append((images[i][j].size()[1] // self.vit_config.patch_size, images[i][j].size()[2] // self.vit_config.patch_size))
|
736 |
-
|
737 |
-
images_feats, img_batch_pos = self.vit(pixel_values=images)
|
738 |
-
a2 = self.vit_config.adaptor_patch_size ** 2
|
739 |
-
|
740 |
-
if self.anyres_vit_two_views:
|
741 |
-
step = 2
|
742 |
-
else:
|
743 |
-
step = 1
|
744 |
-
perceive_fn = lambda x, img_size, is_video: self.perceive(x, img_size, is_video=is_video)
|
745 |
-
images_list = []
|
746 |
-
images_fix_i = 0
|
747 |
-
num_img_batch_pos = len(img_batch_pos)
|
748 |
-
for i in range(num_img_batch_pos): # batch_id
|
749 |
-
for j in range(0, len(img_batch_pos[i]), step):
|
750 |
-
if self.anyres_vit_two_views:
|
751 |
-
lower_idx, lower_begin, lower_end = img_batch_pos[i][j]
|
752 |
-
lower_begin = lower_begin * a2
|
753 |
-
lower_end = lower_end * a2
|
754 |
-
higher_idx, higher_begin, higher_end = img_batch_pos[i][j + 1]
|
755 |
-
higher_begin = higher_begin * a2
|
756 |
-
higher_end = higher_end * a2
|
757 |
-
lower_res_feat = images_feats[lower_idx, lower_begin:lower_end].unsqueeze(0)
|
758 |
-
higher_res_feat = images_feats[higher_idx, higher_begin:higher_end].unsqueeze(0)
|
759 |
-
lower_images_size = images_size[i][j]
|
760 |
-
higher_images_size = images_size[i][j + 1]
|
761 |
-
images_list.append(self.perceive(lower_res_feat, lower_images_size, higher_res_feat, higher_images_size))
|
762 |
-
else:
|
763 |
-
idx, begin, end = img_batch_pos[i][j]
|
764 |
-
begin = begin * a2
|
765 |
-
end = end * a2
|
766 |
-
is_video = hasattr(images[i][j],'_is_video') and images[i][j]._is_video
|
767 |
-
images_list.append(perceive_fn(images_feats[idx, begin:end].unsqueeze(0), images_size[i][j], is_video=is_video))
|
768 |
-
|
769 |
-
images = torch.cat(images_list, dim=1)
|
770 |
-
|
771 |
-
new_batch_pos = []
|
772 |
-
k = 0; cur_len = 0
|
773 |
-
for i in range(len(images_size)):
|
774 |
-
new_batch_pos.append([])
|
775 |
-
for j in range(0, len(images_size[i]), step):
|
776 |
-
new_pos = [0, cur_len, cur_len + images_list[k].size(1)]
|
777 |
-
cur_len += images_list[k].size(1)
|
778 |
-
k += 1
|
779 |
-
new_batch_pos[i].append(new_pos)
|
780 |
-
return images, new_batch_pos
|
781 |
-
elif self.vit_type == 'Vit-g':
|
782 |
-
images = self.vit(pixel_values=images, interpolate_pos_encoding=False, img_index=img_index)
|
783 |
-
else:
|
784 |
-
assert False, "other vit_types are not supported"
|
785 |
-
|
786 |
-
if self.vit_mapping_type == 'mlp':
|
787 |
-
if self.vit_type in ['Vit-g'] and not self.skip_cls_token:
|
788 |
-
images = images[:,1:,:]
|
789 |
-
b, v, d = images.shape
|
790 |
-
s = int(math.sqrt(v))
|
791 |
-
images = images.reshape(b, s, s, d)
|
792 |
-
|
793 |
-
|
794 |
-
if self.vit_patch_mlp and img_index is not None:
|
795 |
-
L_tensor = torch.tensor(img_index)
|
796 |
-
device = images.device
|
797 |
-
# 获取子图位置
|
798 |
-
nonzero_indices = torch.nonzero(L_tensor).squeeze().to(device)
|
799 |
-
# 获取主图位置
|
800 |
-
zero_indices = torch.nonzero(L_tensor == 0).squeeze().to(device)
|
801 |
-
|
802 |
-
|
803 |
-
images_nonzero = torch.index_select(images,0, nonzero_indices).to(device)
|
804 |
-
images_zero = torch.index_select(images, 0, zero_indices).to(device)
|
805 |
-
|
806 |
-
# 子图额外多pool一次
|
807 |
-
pool_rate = self.pool_rate * 2
|
808 |
-
images_nonzero = images_nonzero.reshape(-1, s // pool_rate, pool_rate, s // pool_rate, pool_rate, d)
|
809 |
-
images_nonzero = images_nonzero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // pool_rate) * (s // pool_rate), d,
|
810 |
-
pool_rate*pool_rate).mean(-1)
|
811 |
-
|
812 |
-
# 为了组batch折衷方案
|
813 |
-
images_nonzero = F.pad(images_nonzero, (0, 0, 0, (s // self.pool_rate) * (s // self.pool_rate)- (s // pool_rate) * (s // pool_rate)))
|
814 |
-
images_zero = images_zero.reshape(-1, s // self.pool_rate, self.pool_rate, s // self.pool_rate, self.pool_rate, d)
|
815 |
-
images_zero = images_zero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // self.pool_rate) * (s // self.pool_rate), d,
|
816 |
-
self.pool_rate*self.pool_rate).mean(-1)
|
817 |
-
# 组batch
|
818 |
-
images = torch.zeros(b, (s // self.pool_rate) * (s // self.pool_rate), d).to(device).to(images.dtype)
|
819 |
-
images.index_copy_(0, nonzero_indices, images_nonzero)
|
820 |
-
images.index_copy_(0, zero_indices, images_zero)
|
821 |
-
|
822 |
-
if self.mlp_depth >= 2:
|
823 |
-
images = self.perceive(images)
|
824 |
-
else:
|
825 |
-
if s % self.pool_rate == 0:
|
826 |
-
images = images.reshape(b, s//self.pool_rate, self.pool_rate, s//self.pool_rate, self.pool_rate, d)
|
827 |
-
images = images.permute(0, 1, 3, 5, 2, 4).reshape(b, (s//self.pool_rate) * (s//self.pool_rate), d, -1).mean(-1)
|
828 |
-
if self.mlp_depth >= 2:
|
829 |
-
images = self.perceive(images)
|
830 |
-
else:
|
831 |
-
raise ValueError
|
832 |
-
return images
|
833 |
-
|
834 |
-
|
835 |
-
class SimpleConvMlp(nn.Module):
|
836 |
-
def __init__(self, in_channels, out_channels, anyres_pooling_size, vit_used_rms_norm, rms_norm_eps, twoview=False, poolmlp=True, cat_extra_token=True):
|
837 |
-
super().__init__()
|
838 |
-
|
839 |
-
embed_std = 1 / math.sqrt(out_channels)
|
840 |
-
if poolmlp:
|
841 |
-
# if args.learnable_mlp_pooling_size is not None:
|
842 |
-
# in_channels *= args.learnable_mlp_pooling_size ** 2
|
843 |
-
self.proj = nn.Sequential(
|
844 |
-
nn.Linear(in_channels, out_channels),
|
845 |
-
nn.GELU()
|
846 |
-
)
|
847 |
-
self.vit_linear_encoder = nn.Linear(out_channels, out_channels)
|
848 |
-
self.image_newline = nn.Parameter(
|
849 |
-
torch.randn(out_channels) * embed_std
|
850 |
-
)
|
851 |
-
else:
|
852 |
-
self.proj = nn.Sequential(
|
853 |
-
nn.Conv2d(in_channels, in_channels * 2, kernel_size=anyres_pooling_size, stride=anyres_pooling_size),
|
854 |
-
nn.GELU(),
|
855 |
-
nn.Conv2d(in_channels * 2, in_channels * 4, kernel_size=1),
|
856 |
-
)
|
857 |
-
self.mlp = nn.Linear(in_channels * 4, out_channels)
|
858 |
-
self.image_newline = nn.Parameter(
|
859 |
-
torch.randn(in_channels * 4) * embed_std
|
860 |
-
)
|
861 |
-
self.poolmlp = poolmlp
|
862 |
-
|
863 |
-
self.image_begin = nn.Parameter(
|
864 |
-
torch.randn(out_channels) * embed_std
|
865 |
-
)
|
866 |
-
self.image_end = nn.Parameter(
|
867 |
-
torch.randn(out_channels) * embed_std
|
868 |
-
)
|
869 |
-
|
870 |
-
if twoview:
|
871 |
-
self.image_sep = nn.Parameter(
|
872 |
-
torch.randn(out_channels) * embed_std
|
873 |
-
)
|
874 |
-
|
875 |
-
self.cat_extra_token = cat_extra_token
|
876 |
-
self.use_rms_norm = vit_used_rms_norm
|
877 |
-
if self.use_rms_norm:
|
878 |
-
self.before_rms = HunYuanRMSNorm(in_channels, eps=rms_norm_eps)
|
879 |
-
self.after_rms = HunYuanRMSNorm(out_channels, eps=rms_norm_eps)
|
880 |
-
|
881 |
-
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
|
882 |
-
return self.single_forward(x=x, size=size, x2=x2, size2=size2, is_video=is_video)
|
883 |
-
|
884 |
-
def single_forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
|
885 |
-
remove_vit_special_tokens = False
|
886 |
-
learnable_mlp_pooling_size = None
|
887 |
-
if self.use_rms_norm:
|
888 |
-
x = self.before_rms(x)
|
889 |
-
h, w = size
|
890 |
-
dtype = x.dtype
|
891 |
-
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, h, w)
|
892 |
-
if self.poolmlp:
|
893 |
-
if learnable_mlp_pooling_size is None:
|
894 |
-
x = F.avg_pool2d(x, anyres_pooling_size)
|
895 |
-
x = self.proj(x.permute(0, 2, 3, 1)) # b, h, w, c
|
896 |
-
else:
|
897 |
-
x = x.permute(0, 2, 3, 1) # b, h, w, c
|
898 |
-
x = x.reshape(x.shape[0], h // learnable_mlp_pooling_size, learnable_mlp_pooling_size,
|
899 |
-
w // learnable_mlp_pooling_size, learnable_mlp_pooling_size, -1)
|
900 |
-
x = x.permute(0, 1, 3, 2, 4, 5).reshape(x.shape[0], h // learnable_mlp_pooling_size, w // learnable_mlp_pooling_size, -1)
|
901 |
-
x = self.proj(x)
|
902 |
-
x = self.vit_linear_encoder(x)
|
903 |
-
b, h, w, c = x.shape
|
904 |
-
if not remove_vit_special_tokens:
|
905 |
-
x = torch.cat([
|
906 |
-
x,
|
907 |
-
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype, non_blocking=True)
|
908 |
-
], dim=2)
|
909 |
-
x = x.reshape(b, -1, c)
|
910 |
-
else:
|
911 |
-
x = self.proj(x) #b,c,h,w
|
912 |
-
if is_video:
|
913 |
-
video_avgpool_size = 2
|
914 |
-
stride = 2
|
915 |
-
x = F.avg_pool2d(x, kernel_size = video_avgpool_size, stride = stride)
|
916 |
-
b, c, h, w = x.shape
|
917 |
-
if not remove_vit_special_tokens:
|
918 |
-
x = torch.cat([
|
919 |
-
x,
|
920 |
-
self.image_newline.reshape(1, c, 1, 1).expand(b, c, h, 1).to(dtype, non_blocking=True)
|
921 |
-
], dim=-1)
|
922 |
-
x = x.reshape(b, c, -1).permute(0, 2, 1)
|
923 |
-
x = self.mlp(x)
|
924 |
-
|
925 |
-
|
926 |
-
if x2 is not None:
|
927 |
-
h2, w2 = size2
|
928 |
-
x2 = x2.permute(0, 2, 1).reshape(x2.shape[0], -1, h2, w2)
|
929 |
-
if self.poolmlp:
|
930 |
-
x2 = F.avg_pool2d(x2, 2)
|
931 |
-
x2 = self.proj(x2.permute(0, 2, 3, 1)) # b, h, w, c
|
932 |
-
x2 = self.vit_linear_encoder(x2)
|
933 |
-
b2, h2, w2, c2 = x2.shape
|
934 |
-
if not remove_vit_special_tokens:
|
935 |
-
x2 = torch.cat([
|
936 |
-
x2,
|
937 |
-
self.image_newline.reshape(1, 1, 1, c2).expand(b2, h2, 1, c2).to(dtype, non_blocking=True)
|
938 |
-
], dim=2)
|
939 |
-
x2 = x2.reshape(b2, -1, c2)
|
940 |
-
else:
|
941 |
-
x2 = self.proj(x2)
|
942 |
-
b2, c2, h2, w2 = x2.shape
|
943 |
-
if not remove_vit_special_tokens:
|
944 |
-
x2 = torch.cat([
|
945 |
-
x2,
|
946 |
-
self.image_newline.reshape(1, c2, 1, 1).expand(b2, c2, h2, 1).to(dtype, non_blocking=True)
|
947 |
-
], dim=-1)
|
948 |
-
x2 = x2.reshape(b2, c2, -1).permute(0, 2, 1) #b,n,c
|
949 |
-
x2 = self.mlp(x2)
|
950 |
-
|
951 |
-
sep = self.image_sep.reshape(1, 1, -1).expand(b2, 1, x2.shape[-1]).to(dtype, non_blocking=True)
|
952 |
-
|
953 |
-
x = torch.cat([x, sep, x2], dim=1)
|
954 |
-
|
955 |
-
if self.cat_extra_token:
|
956 |
-
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
|
957 |
-
end = self.image_end.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
|
958 |
-
x = torch.cat([begin, x, end], dim=1)
|
959 |
-
|
960 |
-
if self.use_rms_norm:
|
961 |
-
return self.after_rms(x)
|
962 |
-
else:
|
963 |
-
return x
|
964 |
-
|
965 |
-
|
966 |
-
class NormalizedDwPooler(nn.Module):
|
967 |
-
def __init__(self, dim):
|
968 |
-
super().__init__()
|
969 |
-
self.dim = dim
|
970 |
-
self.predictor = nn.Sequential(
|
971 |
-
nn.Linear(dim*2, dim),
|
972 |
-
nn.GELU(),
|
973 |
-
nn.Linear(dim, dim),
|
974 |
-
)
|
975 |
-
|
976 |
-
def forward(self, x, forward_type='2x'):
|
977 |
-
B, H, W, C = x.shape
|
978 |
-
|
979 |
-
if forward_type == '2x':
|
980 |
-
new_x = x.reshape(B, H//2, 2, W//2, 2, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//2, W//2, 4, C)
|
981 |
-
pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 4, -1)
|
982 |
-
fused_x = torch.cat([new_x, pooled_x], dim=-1)
|
983 |
-
elif forward_type == '1x':
|
984 |
-
new_x = x.reshape(B, H, W, 1, C)
|
985 |
-
fused_x = torch.cat([new_x, new_x], dim=-1)
|
986 |
-
elif forward_type == '4x':
|
987 |
-
new_x = x.reshape(B, H//4, 4, W//4, 4, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//4, W//4, 16, C)
|
988 |
-
pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 16, -1)
|
989 |
-
fused_x = torch.cat([new_x, pooled_x], dim=-1)
|
990 |
-
|
991 |
-
score = self.predictor(fused_x)
|
992 |
-
normalized_score = F.softmax(score, dim=-2)
|
993 |
-
new_x = (new_x * normalized_score).sum(dim=-2)
|
994 |
-
return new_x
|
995 |
-
|
996 |
-
|
997 |
-
class OryxMLPv2(nn.Module):
|
998 |
-
def __init__(self, in_channels, out_channels, twoview=False, use_pe=False):
|
999 |
-
super().__init__()
|
1000 |
-
|
1001 |
-
self.proj1 = nn.Linear(in_channels, out_channels)
|
1002 |
-
self.proj2 = nn.Linear(out_channels, out_channels)
|
1003 |
-
self.act = nn.GELU()
|
1004 |
-
self.pooler = NormalizedDwPooler(out_channels)
|
1005 |
-
embed_std = 1 / math.sqrt(out_channels)
|
1006 |
-
|
1007 |
-
self.use_pe = use_pe
|
1008 |
-
if not use_pe:
|
1009 |
-
self.image_newline = nn.Parameter(
|
1010 |
-
torch.randn(out_channels) * embed_std
|
1011 |
-
)
|
1012 |
-
self.image_begin = nn.Parameter(
|
1013 |
-
torch.randn(out_channels) * embed_std
|
1014 |
-
)
|
1015 |
-
self.image_end = nn.Parameter(
|
1016 |
-
torch.randn(out_channels) * embed_std
|
1017 |
-
)
|
1018 |
-
|
1019 |
-
if twoview:
|
1020 |
-
self.image_sep = nn.Parameter(
|
1021 |
-
torch.randn(out_channels) * embed_std
|
1022 |
-
)
|
1023 |
-
|
1024 |
-
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
|
1025 |
-
h, w = size
|
1026 |
-
dtype = x.dtype
|
1027 |
-
x = x.reshape(x.shape[0], h, w, -1)
|
1028 |
-
# x = self.pooler(x, forward_type=REGIONAL_POOL)
|
1029 |
-
# x = self.proj(x) #b,h,w, c
|
1030 |
-
x = self.proj1(x)
|
1031 |
-
x = self.pooler(x, forward_type='2x')
|
1032 |
-
x = self.act(x)
|
1033 |
-
x = self.proj2(x)
|
1034 |
-
|
1035 |
-
|
1036 |
-
b, h, w, c = x.shape
|
1037 |
-
if not self.use_pe:
|
1038 |
-
x = torch.cat([
|
1039 |
-
x,
|
1040 |
-
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype)
|
1041 |
-
], dim=2)
|
1042 |
-
else:
|
1043 |
-
pe_h = torch.arange(h, dtype=torch.long, device=x.device).reshape(1, h, 1, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
|
1044 |
-
pe_w = torch.arange(w, dtype=torch.long, device=x.device).reshape(1, 1, w, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
|
1045 |
-
pe = torch.cat([pe_h, pe_w], dim=-1)
|
1046 |
-
|
1047 |
-
x = x.reshape(b, -1, c)
|
1048 |
-
|
1049 |
-
if x2 is not None:
|
1050 |
-
h2, w2 = size2
|
1051 |
-
x2 = x2.reshape(x2.shape[0], h2, w2, -1)
|
1052 |
-
# x2 = self.pooler(x2, forward_type=REGIONAL_POOL)
|
1053 |
-
## x2 = self.proj(x2) #b,h,w, c
|
1054 |
-
x2 = self.proj1(x2)
|
1055 |
-
x2 = self.pooler(x2, forward_type='2x')
|
1056 |
-
x2 = self.act(x2)
|
1057 |
-
x2 = self.proj2(x2)
|
1058 |
-
|
1059 |
-
b2, h2, w2, c2 = x2.shape
|
1060 |
-
if not self.use_pe:
|
1061 |
-
x2 = torch.cat([
|
1062 |
-
x2,
|
1063 |
-
self.image_newline.reshape(1, 1, 1, c).expand(b, h2, 1, c).to(dtype)
|
1064 |
-
], dim=2)
|
1065 |
-
x2 = x2.reshape(b, -1, c)
|
1066 |
-
sep = self.image_sep.reshape(1, 1, -1).expand(b, 1, c2).to(dtype)
|
1067 |
-
x = torch.cat([x, sep, x2], dim=1)
|
1068 |
-
|
1069 |
-
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
|
1070 |
-
end = self.image_end.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
|
1071 |
-
x = torch.cat([begin, x, end], dim=1)
|
1072 |
-
# print(x.shape, x2.shape, h, w, h2, w2)
|
1073 |
-
# print("vit rank = " + str(torch.distributed.get_rank()) +" x = " + str(x))
|
1074 |
-
if self.use_pe:
|
1075 |
-
zero_pad = torch.zeros(b, 1, 2, device=x.device, dtype=torch.long)
|
1076 |
-
pe = torch.cat([zero_pad, pe, zero_pad], dim=1)
|
1077 |
-
assert pe.shape[1] == x.shape[1]
|
1078 |
-
return x, pe
|
1079 |
-
else:
|
1080 |
-
nseq = x.shape[1]
|
1081 |
-
fake_pe = torch.zeros(b, nseq, 2, device=x.device, dtype=torch.long)
|
1082 |
-
return x #, fake_pe
|
1083 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|