File size: 17,287 Bytes
0e46c5b
 
 
 
19cc7fc
0e46c5b
 
4eee8e6
 
 
 
cb87680
 
 
 
 
 
 
 
10e78a4
4eee8e6
6c19cd6
10e78a4
cb87680
 
4eee8e6
 
cb87680
 
 
4eee8e6
cb87680
4eee8e6
cb87680
4eee8e6
cb87680
 
 
 
 
4eee8e6
cb87680
 
 
4eee8e6
 
 
 
10e78a4
4eee8e6
 
 
 
 
 
 
e9d2b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eee8e6
 
 
cb87680
4eee8e6
54b75d5
 
 
 
 
 
 
 
 
 
4eee8e6
 
cb87680
4eee8e6
cb87680
fee83ca
4eee8e6
 
 
 
cb87680
 
 
 
4eee8e6
cb87680
fee83ca
 
 
cb87680
 
 
fee83ca
 
 
 
 
 
 
 
cb87680
 
4eee8e6
cb87680
4eee8e6
cb87680
 
 
 
 
 
 
 
 
 
4eee8e6
 
fee83ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e78a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eee8e6
cb87680
4eee8e6
10e78a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eee8e6
 
fee83ca
4eee8e6
 
cb87680
4eee8e6
 
 
 
10e78a4
 
cb87680
4eee8e6
cb87680
 
 
 
 
4eee8e6
 
 
cb87680
4eee8e6
cb87680
 
 
 
 
 
4eee8e6
cb87680
4eee8e6
cb87680
4eee8e6
cb87680
 
 
 
 
4eee8e6
 
 
fee83ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb87680
4eee8e6
 
 
cb87680
4eee8e6
 
 
 
 
 
10e78a4
 
 
4eee8e6
 
 
 
 
 
 
 
 
10e78a4
cb87680
4eee8e6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
---
license: other
license_name: tencent-hunyuan-a13b
license_link: https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/LICENSE
library_name: transformers
---

<p align="center">
 <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>


<p align="center">
    🫣&nbsp;<a href="https://huggingface.co/tencent/Hunyuan-A13B-Instruct"><b>Hugging Face</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🖥️&nbsp;<a href="https://llm.hunyuan.tencent.com/" style="color: red;"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕖&nbsp;<a href="https://cloud.tencent.com/product/hunyuan"><b>HunyuanAPI</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕹️&nbsp;<a href="https://hunyuan.tencent.com/?model=hunyuan-a13b"><b>Demo</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
</p>


<p align="center">
    <a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B"><b>GITHUB</b></a> | 
    <a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/LICENSE"><b>LICENSE</b></a>
</p>


  
Welcome to the official repository of **Hunyuan-A13B**, an innovative and open-source large language model (LLM) built on a fine-grained Mixture-of-Experts (MoE) architecture. Designed for efficiency and scalability, Hunyuan-A13B delivers cutting-edge performance with minimal computational overhead, making it an ideal choice for advanced reasoning and general-purpose applications, especially in resource-constrained environments.

## Model Introduction

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have achieved remarkable progress in natural language processing, computer vision, and scientific tasks. However, as model scales continue to expand, optimizing resource consumption while maintaining high performance has become a critical challenge. To address this, we have explored Mixture of Experts (MoE) architectures. The newly introduced Hunyuan-A13B model features a total of 80 billion parameters with 13 billion active parameters. It not only delivers high-performance results but also achieves optimal resource efficiency, successfully balancing computational power and resource utilization.

### Key Features and Advantages

- **Compact yet Powerful**: With only 13 billion active parameters (out of a total of 80 billion), the model delivers competitive performance on a wide range of benchmark tasks, rivaling much larger models.
- **Hybrid Inference Support**: Supports both fast and slow thinking modes, allowing users to flexibly choose according to their needs.
- **Ultra-Long Context Understanding**: Natively supports a 256K context window, maintaining stable performance on long-text tasks.
- **Enhanced Agent Capabilities**: Optimized for agent tasks, achieving leading results on benchmarks such as BFCL-v3 and τ-Bench.
- **Efficient Inference**: Utilizes Grouped Query Attention (GQA) and supports multiple quantization formats, enabling highly efficient inference.

### Why Choose Hunyuan-A13B?

As a powerful yet computationally efficient large model, Hunyuan-A13B is an ideal choice for researchers and developers seeking high performance under resource constraints. Whether for academic research, cost-effective AI solution development, or innovative application exploration, this model provides a robust foundation for advancement.

&nbsp;

## Related News
* 2025.6.27 We have open-sourced  **Hunyuan-A13B-Pretrain** , **Hunyuan-A13B-Instruct** , **Hunyuan-A13B-Instruct-FP8** , **Hunyuan-A13B-Instruct-GPTQ-Int4** on Hugging Face.
<br>


## Benchmark

Note: The following benchmarks are evaluated by TRT-LLM-backend

| Model            | Hunyuan-Large | Qwen2.5-72B  | Qwen3-A22B | Hunyuan-A13B |
|------------------|---------------|--------------|-------------|---------------|
| MMLU             | 88.40          | 86.10         | 87.81        | 88.17          |
| MMLU-Pro         | 60.20          | 58.10        | 68.18           | 67.23          |
| MMLU-Redux              |  87.47         | 83.90         | 87.40        | 87.67          |
| BBH        | 86.30             | 85.80            | 88.87        | 87.56          |
| SuperGPQA    |  38.90         | 36.20          | 44.06           | 41.32          |
| EvalPlus       | 75.69          | 65.93         | 77.60        | 78.64          |
| MultiPL-E             | 59.13             | 60.50            | 65.94        | 69.33          |
| MBPP | 72.60             | 76.00            | 81.40        | 83.86          |
| CRUX-I             | 57.00          | 57.63          | -        | 70.13          |
| CRUX-O             | 60.63          | 66.20          | 79.00        | 77.00          |
| MATH            | 69.80          | 62.12         | 71.84        | 72.35          |
| CMATH            | 91.30          | 84.80         | -        | 91.17          |
| GSM8k         | 92.80             | 91.50           | 94.39        | 91.83          |
| GPQA            | 25.18             | 45.90            | 47.47        | 49.12          |




Hunyuan-A13B-Instruct has achieved highly competitive performance across multiple benchmarks, particularly in mathematics, science, agent domains, and more. We compared it with several powerful models, and the results are shown below.

|           **Topic**          |                      **Bench**                     |        **OpenAI-o1-1217**        |        **DeepSeek R1**       |        **Qwen3-A22B**        |         **Hunyuan-A13B-Instruct**        |
| :--------------------------: | :------------------------------------------------: | :------------------------------: | :--------------------------: | :--------------------------: | :--------------------------------------: |
|        **Mathematics**       |           AIME 2024<br>AIME 2025<br>MATH           |     74.3<br>79.2<br>**96.4**     |      79.8<br>70<br>94.9      |   85.7<br>**81.5**<br>94.0   |         **87.3**<br>76.8<br>94.3         |
|          **Science**         |            GPQA-Diamond<br>OlympiadBench           |          **78**<br>83.1          |         71.5<br>82.4         |       71.1<br>**85.7**       |               71.2<br>82.7               |
|          **Coding**          |  Livecodebench<br>Fullstackbench<br>ArtifactsBench |       63.9<br>64.6<br>38.6       | 65.9<br>**71.6**<br>**44.6** | **70.7**<br>65.6<br>**44.6** |            63.9<br>67.8<br>43            |
|         **Reasoning**        |              BBH<br>DROP<br>ZebraLogic             |        80.4<br>90.2<br>81        |   83.7<br>**92.2**<br>78.7   |     88.9<br>90.3<br>80.3     |       **89.1**<br>91.1<br>**84.7**       |
| **Instruction<br>Following** |                 IF-Eval<br>SysBench                |       **91.8**<br>**82.5**       |         88.3<br>77.7         |         83.4<br>74.2         |               84.7<br>76.1               |
|     **Text<br>Creation**     |                LengthCtrl<br>InsCtrl               |       **60.1**<br>**74.8**       |          55.9<br>69          |         53.3<br>73.7         |               55.4<br>71.9               |
|            **NLU**           |               ComplexNLU<br>Word-Task              |         **64.7**<br>67.1         |       64.5<br>**76.3**       |         59.8<br>56.4         |               61.2<br>62.9               |
|           **Agent**          | BDCL v3<br>τ-Bench<br>ComplexFuncBench<br>C3-Bench | 67.8<br>**60.4**<br>47.6<br>58.8 | 56.9<br>43.8<br>41.1<br>55.3 | 70.8<br>44.6<br>40.6<br>51.7 | **78.3**<br>54.7<br>**61.2**<br>**63.5** |


&nbsp;

## Use with transformers
Below is an example of how to use this model with the Hugging Face transformers library. This includes loading the model and tokenizer, toggling reasoning (thinking) mode, and parsing both the reasoning process and final answer from the output.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re

model_name_or_path = os.environ['MODEL_PATH']
# model_name_or_path = "tencent/Hunyuan-A13B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                            device_map="auto",trust_remote_code=True)  # You may want to use bfloat16 and/or move to GPU here

messages = [
    {"role": "user", "content": "Write a short summary of the benefits of regular exercise"},
]

tokenized_chat = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt",
        enable_thinking=True # Toggle thinking mode (default: True)
        )
                                                
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=4096)

output_text = tokenizer.decode(outputs[0])

think_pattern = r'<think>(.*?)</think>'
think_matches = re.findall(think_pattern, output_text, re.DOTALL)

answer_pattern = r'<answer>(.*?)</answer>'
answer_matches = re.findall(answer_pattern, output_text, re.DOTALL)

think_content = [match.strip() for match in think_matches][0]
answer_content = [match.strip() for match in answer_matches][0]
print(f"thinking_content:{think_content}\n\n")
print(f"answer_content:{answer_content}\n\n")
```

### Fast and slow thinking switch

This model supports two modes of operation:

- Slow Thinking Mode (Default): Enables detailed internal reasoning steps before producing the final answer.
- Fast Thinking Mode: Skips the internal reasoning process for faster inference, going straight to the final answer.

**Switching to Fast Thinking Mode:**

To disable the reasoning process, set `enable_thinking=False` in the apply_chat_template call:
```
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt",
    enable_thinking=False  # Use fast thinking mode
)
```                                           


## Quantitative Compression
We used our own `AngleSlim` compression tool to produce FP8 and INT4 quantization models. `AngleSlim` compression tool is expected to be open source in early July, which will support one-click quantization and compression of large models, please look forward to it, and you can download our quantization models directly for deployment testing now.

### FP8 Quantization
We use FP8-static quantization, FP8 quantization adopts 8-bit floating point format, through a small amount of calibration data (without training) to pre-determine the quantization scale, the model weights and activation values will be converted to FP8 format, to improve the inference efficiency and reduce the deployment threshold. We you can use AngleSlim quantization, you can also directly download our quantization completed open source model to use [Hunyuan-A13B-Instruct-FP8](https://huggingface.co/tencent/Hunyuan-A13B-Instruct-FP8).

#### FP8 Benchmark
This subsection describes the Benchmark metrics for the Hunyuan-80B-A13B-Instruct-FP8 quantitative model.

|   Bench   | Hunyuan-A13B-Instruct | Hunyuan-A13B-Instruct-FP8 | 
|:---------:|:---------------------:|:-------------------------:|
| AIME 2024 |         87.3          |           86.7            |
|   Gsm8k   |         94.39         |           94.01           |
|    BBH    |         89.1          |           88.34           |
|   DROP    |         91.1          |           91.1            |

### Int4 Quantization
We use the GPTQ algorithm to achieve W4A16 quantization, which processes the model weights layer by layer, uses a small amount of calibration data to minimize the reconfiguration error of the quantized weights, and adjusts the weights layer by layer by the optimization process of approximating the Hessian inverse matrix. The process eliminates the need to retrain the model and requires only a small amount of calibration data to quantize the weights, improving inference efficiency and lowering the deployment threshold. You can use `AngleSlim` quantization, you can also directly download our quantization completed open source model to use [Hunyuan-A13B-Instruct-Int4](https://huggingface.co/tencent/Hunyuan-A13B-Instruct-GPTQ-Int4).

#### Int4 Benchmark
This subsection describes the Benchmark metrics for the Hunyuan-80B-A13B-Instruct-GPTQ-Int4 quantitative model.

|     Bench      | Hunyuan-A13B-Instruct | Hunyuan-A13B-Instruct-GPTQ-Int4 | 
|:--------------:|:---------------------:|:-------------------------------:|
| OlympiadBench  |         82.7          |              84.0               |
|   AIME 2024    |         87.3          |              86.7               |
|     Gsm8k      |         94.39         |              94.24              |
|      BBH       |         88.34         |              87.91              |
|      DROP      |         91.12         |              91.05              |


## Deployment   

For deployment, you can use frameworks such as **TensorRT-LLM**, **vLLM**, or **SGLang** to serve the model and create an OpenAI-compatible API endpoint.

image: https://hub.docker.com/r/hunyuaninfer/hunyuan-a13b/tags 


### TensorRT-LLM

#### Docker Image 

We provide a pre-built Docker image based on the latest version of TensorRT-LLM.

- To get started:

https://hub.docker.com/r/hunyuaninfer/hunyuan-large/tags 

```
docker pull hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-trtllm
```

- Start the API server:

```
docker run --name hunyuanLLM_infer --rm -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-trtllm
```
```
trtllm-serve \
  /path/to/HunYuan-moe-A13B \
  --host localhost \
  --port 8000 \
  --backend pytorch \
  --max_batch_size 128 \
  --max_num_tokens 16384 \
  --tp_size 2 \
  --kv_cache_free_gpu_memory_fraction 0.95 \
  --extra_llm_api_options /path/to/extra-llm-api-config.yml
```


### vLLM

#### Docker Image
We provide a pre-built Docker image containing vLLM 0.8.5 with full support for this model. The official vllm release is currently under development, **note: cuda 12.8 is require for this docker**.

- To get started:

```
docker pull docker.cnb.cool/tencent/hunyuan/hunyuan-a13b:hunyuan-moe-A13B-vllm 
or
docker pull hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-vllm
```

- Download Model file: 
  - Huggingface:  will download automicly by vllm.
  - ModelScope: `modelscope download --model Tencent-Hunyuan/Hunyuan-A13B-Instruct`
 

- Start the API server:

model download by huggingface:
```
docker run  --privileged --user root  --net=host --ipc=host \
        -v ~/.cache:/root/.cache/ \
        --gpus=all -it --entrypoint python  hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-vllm
 \
         -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000 \
         --tensor-parallel-size 4 --model tencent/Hunyuan-A13B-Instruct --trust-remote-code 

``` 

model downloaded by modelscope:
```
docker run  --privileged --user root  --net=host --ipc=host \
        -v ~/.cache/modelscope:/root/.cache/modelscope \
        --gpus=all -it --entrypoint python   hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-vllm \
         -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --tensor-parallel-size 4 --port 8000 \ 
         --model /root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-A13B-Instruct/ --trust_remote_code  
```



#### Tool Calling with vLLM

To support agent-based workflows and function calling capabilities, this model includes specialized parsing mechanisms for handling tool calls and internal reasoning steps.

For a complete working example of how to implement and use these features in an agent setting, please refer to our full agent implementation on GitHub:  
🔗 [Hunyuan A13B Agent Example](https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/agent/)

When deploying the model using **vLLM**, the following parameters can be used to configure the tool parsing behavior:

| Parameter                | Value                                                                 |
|--------------------------|-----------------------------------------------------------------------|
| `--tool-parser-plugin`   | [Local Hunyuan A13B Tool Parser File](https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/agent/hunyuan_tool_parser.py) |
| `--tool-call-parser`     | `hunyuan`                                                            |

These settings enable vLLM to correctly interpret and route tool calls generated by the model according to the expected format.



### SGLang

#### Docker Image 

We also provide a pre-built Docker image based on the latest version of SGLang.

To get started:

- Pull the Docker image

```
docker pull docker.cnb.cool/tencent/hunyuan/hunyuan-a13b:hunyuan-moe-A13B-sglang
or
docker pull hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-sglang
```

- Start the API server:

```
docker run --gpus all \
    --shm-size 32g \
    -p 30000:30000 \
    --ipc=host \
    docker.cnb.cool/tencent/hunyuan/hunyuan-a13b:hunyuan-moe-A13B-sglang \
    -m sglang.launch_server --model-path hunyuan/huanyuan_A13B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000
```


## Contact Us

If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team . You can also contact us via email (hunyuan[email protected]).