manaestras commited on
Commit
411c205
·
verified ·
1 Parent(s): e4205af

Update Notice.txt

Browse files
Files changed (1) hide show
  1. Notice.txt +159 -1082
Notice.txt CHANGED
@@ -1,1083 +1,160 @@
1
- import json
2
- import types
3
- import math
4
- import torch
5
- from torch import Tensor, nn
6
- import torch.nn.functional as F
7
- from typing import List, Tuple, Optional, Union
8
- from contextlib import contextmanager
9
- from transformers.modeling_attn_mask_utils import (
10
- _prepare_4d_causal_attention_mask_for_sdpa,
11
- _prepare_4d_causal_attention_mask_for_sdpa,
12
- _prepare_4d_causal_attention_mask,
13
- )
14
- from transformers.models.clip.configuration_clip import CLIPVisionConfig
15
- from transformers.modeling_outputs import BaseModelOutputWithPooling
16
- from .modeling_hunyuan import HunYuanDecoderLayer, HunYuanRMSNorm
17
- from .configuration_hunyuan import HunYuanConfig
18
-
19
-
20
- def NaVitForward(input_ids, encoder_input, vit, image_tensors, images_pos, vit_input_resolution, im_start_id, im_end_id, image_token_id, anyres_vit_two_views, dtype):
21
- # input_ids: (B, L)
22
- # encoder_input: (L, B, E)
23
- # image_tensors [[Tensor],...,[Tensor]]
24
- # image_pos [[Tensor],...,[Tensor]]
25
- # tokenizer = get_tokenizer()
26
- b = len(input_ids)
27
- img_embs = None
28
- all_nums = sum([len(tensors) for tensors in image_tensors]) if image_tensors else 0
29
- if all_nums != 0:
30
- img_embs, img_batch_pos = vit(image_tensors)
31
- else:
32
- # when no input image, initialize a fake tensor
33
- pad_nums = 1
34
- image_tensors = [[torch.rand(3, vit_input_resolution, vit_input_resolution, dtype=dtype, device=torch.cuda.current_device()) for _ in range(pad_nums)]]
35
- img_embs, img_batch_pos = vit(image_tensors)
36
-
37
- encoder_input = encoder_input.clone()
38
- if all_nums > 0:
39
- assert len(images_pos) == len(img_batch_pos), \
40
- (len(images_pos), len(img_batch_pos))
41
- start_token_id = im_start_id
42
- end_token_id = im_end_id
43
- placeholder_id = image_token_id
44
- for idx in range(len(images_pos)):
45
- assert len(images_pos[idx]) == len(img_batch_pos[idx]), \
46
- (len(images_pos[idx]), len(img_batch_pos[idx]))
47
- for p_img_pos_in_batch, p_batch_img_pos in zip(img_batch_pos[idx], images_pos[idx]):
48
- # the positions to be filled [s_start, s_end)
49
- s_idx, s_start, s_end = p_img_pos_in_batch
50
- current_embs = img_embs[s_idx, s_start:s_end]
51
- im_s, im_e = p_batch_img_pos
52
- assert len(current_embs) == im_e - im_s, \
53
- (img_embs.shape, (s_start, s_end, s_idx), current_embs.shape, (im_s, im_e, idx))
54
- if not anyres_vit_two_views:
55
- assert input_ids[idx, im_s - 1] == start_token_id, \
56
- input_ids[idx, im_s - 1]
57
- assert input_ids[idx, im_e] == end_token_id, \
58
- input_ids[idx, im_e]
59
- assert (input_ids[idx, im_s:im_e] == placeholder_id).all(), \
60
- f'The tokens to be filled are not the placeholder_id {placeholder_id}: {(input_ids[idx, im_s:im_e] == placeholder_id).sum()} vs {im_e - im_s}'
61
- encoder_input[idx, im_s:im_e] = current_embs
62
- else:
63
- # when no input image, to mask vit value
64
- vit_mask = torch.zeros([1, img_embs.shape[0]], device=torch.cuda.current_device())
65
- current_embs = img_embs[0, :]
66
- encoder_input[0, 1:img_embs.shape[0] + 1] = encoder_input[0, 1:img_embs.shape[0] + 1] * (1 - vit_mask) + current_embs * vit_mask
67
- return encoder_input, input_ids
68
-
69
-
70
- def VitForward(input_ids, encoder_input, vit, vit_linear_encoder, image_tensors, images_pos, vit_input_resolution, vit_mapping_type, vit_patch, vit_token):
71
- vit_patch_mlp = (vit_patch > 1 and vit_mapping_type == 'mlp') or vit_patch == 0
72
-
73
- b = len(input_ids)
74
- if images_pos is None:
75
- images_pos = torch.ones([len(input_ids), 1, 3])
76
- images_pos[:, :, 1] = images_pos[:, :, 1]*(vit_token + 1)
77
- images_pos = images_pos.long()
78
-
79
- real_image_nums = []
80
- image_tensors = image_tensors.view(b, -1, 3, vit_input_resolution, vit_input_resolution)
81
- real_images = []
82
-
83
- all_nums = 0
84
- img_index = []
85
- for s in range(len(images_pos)):
86
- real_image_num = 0
87
- for (im_s, im_e,index) in images_pos[s]:
88
- if im_s == -1:
89
- break
90
- real_image_num += 1
91
- all_nums += 1
92
- img_index.append(index)
93
-
94
- real_image_nums.append(real_image_num)
95
- real_images.append(image_tensors[s][:real_image_num])
96
-
97
- if vit_patch == 1:
98
- img_index = None
99
-
100
- if all_nums == 0:
101
- # when no input image, initialize a fake tensor
102
- img_input = torch.rand(b, 3, vit_input_resolution, vit_input_resolution).cuda().type(image_tensors.dtype)
103
- img_embs = vit(img_input)
104
- img_embs = vit_linear_encoder(img_embs)
105
- else:
106
- img_input = torch.cat(real_images)
107
- img_embs = vit(img_input, img_index = img_index)
108
- img_embs = vit_linear_encoder(img_embs)
109
-
110
- encoder_input = encoder_input.clone()
111
- start = 0
112
- if all_nums > 0:
113
- for s, real_image_len in enumerate(real_image_nums):
114
- current_embs = img_embs[start:start + real_image_len, :] #[30, 256, 4096]
115
- for ss in range(current_embs.shape[0]):
116
- im_s, im_e, index = images_pos[s, ss]
117
- # 子图特征更少
118
- if index > 0 and vit_patch_mlp:
119
- encoder_input[s, im_s:im_e,] = current_embs[ss, :(im_e-im_s)]
120
- else:
121
- encoder_input[s, im_s:im_e] = current_embs[ss, :]
122
- start = start + real_image_len
123
- else:
124
- # when no input image, to mask vit value
125
- for s in range(b):
126
- vit_mask = torch.zeros([vit_token, 1]).cuda()
127
- current_embs = img_embs[:, start:start + 1]
128
- encoder_input[1:vit_token + 1, s] = encoder_input[1:vit_token + 1, s] * (1 - vit_mask) + current_embs[:, 0, :] * vit_mask
129
- start = start + 1
130
- return encoder_input, input_ids
131
-
132
-
133
- def group_images_by_max_seq_len(
134
- images: List[List[Tensor]], patch_size: int,
135
- max_seq_len: int, adaptor_patch_size: int,
136
- add_cls_token: bool = False) -> List[List[Tensor]]:
137
-
138
- groups = []
139
- group = []
140
- pos_groups = []
141
- seq_len = 0
142
- num_images = 0
143
- for image_list in images:
144
- pos_group = []
145
- for image in image_list:
146
- num_images += 1
147
- assert isinstance(image, Tensor)
148
-
149
- image_dims = image.shape[-2:]
150
- ph, pw = map(lambda t: t // patch_size, image_dims)
151
-
152
- image_seq_len = (ph * pw)
153
- new_image_seq_len = image_seq_len
154
- grouped_len = seq_len + image_seq_len
155
- if add_cls_token:
156
- new_image_seq_len += 1
157
- grouped_len += num_images
158
-
159
- assert new_image_seq_len <= max_seq_len, f'image with dimensions {image_dims} exceeds maximum sequence length'
160
-
161
- if grouped_len > max_seq_len:
162
- groups.append(group)
163
- group = []
164
- seq_len = 0
165
- num_images = 1
166
-
167
- group.append(image)
168
- start = seq_len // (adaptor_patch_size * adaptor_patch_size)
169
- end = start + image_seq_len//(adaptor_patch_size * adaptor_patch_size)
170
- batch_idx = len(groups)
171
- pos_group.append([batch_idx, start, end])
172
- seq_len += image_seq_len
173
- pos_groups.append(pos_group)
174
-
175
- if len(group) > 0:
176
- groups.append(group)
177
-
178
- return groups, pos_groups
179
-
180
-
181
- class AnyResCLIPVisionEmbeddings(nn.Module):
182
- def __init__(self, config: CLIPVisionConfig):
183
- super().__init__()
184
-
185
- self.config = config
186
- # self.sparse_attn_mask = args.sparse_attn_mask
187
- # self.use_flash_attn = args.use_flash_attn
188
- self.embed_dim = config.hidden_size
189
- self.image_size = config.max_image_size
190
- self.patch_size = config.patch_size
191
- self.max_seq_len = config.max_vit_seq_len
192
- self.adaptor_patch_size = config.adaptor_patch_size
193
- self.anyres_vit_two_views = config.anyres_vit_two_views
194
- self.vit_add_patchemb_bias = config.vit_add_patchemb_bias
195
- self.vit_remove_prenorm = config.vit_remove_prenorm
196
-
197
- self.patch_embedding = nn.Conv2d(
198
- in_channels=config.num_channels,
199
- out_channels=self.embed_dim,
200
- kernel_size=self.patch_size,
201
- stride=self.patch_size,
202
- bias=self.vit_add_patchemb_bias,
203
- )
204
-
205
- self.num_patches = (self.image_size // self.patch_size) ** 2
206
- self.skip_cls_token = True
207
-
208
- # add interpolate_pos_encoding
209
- if self.anyres_vit_two_views:
210
- self.num_positions = self.num_patches
211
- self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim) * 0.02)
212
- else:
213
- self.num_positions = self.num_patches + 1
214
- self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
215
- # self.position_ids = torch.arange(self.num_positions).expand((1, -1))
216
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
217
-
218
- if not self.vit_remove_prenorm:
219
- self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
220
-
221
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
222
- """
223
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
224
- resolution images.
225
-
226
- Source:
227
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
228
- """
229
- num_patches = embeddings.shape[1]
230
- position_embeddings = self.position_embedding(self.position_ids)
231
- patch_pos_embed = position_embeddings[:, 1:]
232
- num_positions = position_embeddings.shape[1] - 1
233
- if num_patches == num_positions and height == width:
234
- return patch_pos_embed
235
- # class_pos_embed = position_embeddings[:, 0]
236
- dim = embeddings.shape[-1]
237
- h0 = height // self.patch_size
238
- w0 = width // self.patch_size
239
- # we add a small number to avoid floating point error in the interpolation
240
- # see discussion at https://github.com/facebookresearch/dino/issues/8
241
- h0, w0 = h0 + 0.1, w0 + 0.1
242
- patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
243
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
244
- raw_type = patch_pos_embed.dtype
245
- patch_pos_embed = nn.functional.interpolate(
246
- patch_pos_embed.to(torch.float32, non_blocking=True),
247
- scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
248
- mode="bilinear",
249
- align_corners=False,
250
- )
251
- patch_pos_embed = patch_pos_embed.to(raw_type, non_blocking=True)
252
- assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
253
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
254
- return patch_pos_embed
255
-
256
- def rescale_positional_embedding(self, out_size):
257
- h, w = out_size
258
- pos_embed_shape = int((self.position_embedding.shape[1]) ** 0.5)
259
- if (h, w) == (pos_embed_shape, pos_embed_shape):
260
- return self.position_embedding
261
- rescaled_positional_embedding = \
262
- self.position_embedding.new_zeros(1, h*w, self.position_embedding.shape[2])
263
- pe_2d = self.position_embedding[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape)
264
- pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w)
265
- rescaled_positional_embedding[0] = pe_2d.T.contiguous()
266
- return rescaled_positional_embedding
267
-
268
- def forward_single(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
269
- if pixel_values.ndim == 3:
270
- pixel_values = pixel_values[None]
271
- batch_size, num_channels, height, width = pixel_values.shape
272
-
273
- if self.anyres_vit_two_views:
274
- # padding
275
- pad_h = (self.patch_size - height % self.patch_size) % self.patch_size
276
- pad_w = (self.patch_size - width % self.patch_size) % self.patch_size
277
- pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
278
-
279
- patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
280
- b, c, h, w = patch_embeds.shape
281
-
282
- # (b, hw, c)
283
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
284
- if self.anyres_vit_two_views:
285
- embeddings = patch_embeds + self.rescale_positional_embedding(out_size=(h, w))
286
- else:
287
- embeddings = patch_embeds + self.interpolate_pos_encoding(patch_embeds, height, width)
288
- if not self.vit_remove_prenorm:
289
- embeddings = self.pre_layernorm(embeddings)
290
- return embeddings, (h, w)
291
-
292
- def forward(self, images: List[List[Tensor]]):
293
- '''
294
- Input:
295
- images: List[List[Tensor]]
296
-
297
- Return:
298
- embeddings: Tensor (B, L, E)
299
- attn_mask: Tensor (B, L, 2)
300
- pos_groups: List[List[(batch_idx, start, end)]]
301
- '''
302
- batched_images, pos_groups = group_images_by_max_seq_len(
303
- images, self.patch_size, self.max_seq_len, self.adaptor_patch_size, add_cls_token=not self.skip_cls_token)
304
- max_seq_len = self.max_seq_len
305
-
306
- # batched_images is a list of a list
307
- B = len(batched_images)
308
- L = max_seq_len
309
- E = self.embed_dim
310
-
311
- embeddings = torch.zeros(B, L, E, dtype=self.config.torch_dtype, requires_grad=True).cuda(non_blocking=True)
312
- attn_mask = embeddings.new_full((B, 1, L, L), False, dtype=torch.bool) # True presents compute
313
- assert len(images) == len(pos_groups), (len(images), len(pos_groups))
314
-
315
- batch_images = []
316
- batch_pos = []
317
- for images_i, pos_group in zip(images, pos_groups):
318
- assert len(images_i) == len(pos_group), (len(images_i), len(pos_group))
319
- for image, pos in zip(images_i, pos_group):
320
- batch_idx, start, end = pos
321
- a2 = self.adaptor_patch_size ** 2
322
- # recover the real number of the input image tokens
323
- start *= a2
324
- end *= a2
325
- emb, _ = self.forward_single(image)
326
- assert emb.ndim == 3, '(B, L, E)'
327
- embeddings[batch_idx, start:end] = emb
328
- attn_mask[batch_idx, :, start:end, start:end] = True
329
- return embeddings, attn_mask, pos_groups
330
-
331
-
332
- class CLIPVisionEmbeddings(nn.Module):
333
- def __init__(self, config: CLIPVisionConfig, add_pre_layernorm=False, skip_cls_token=True, vit_patch=1):
334
- super().__init__()
335
- self.config = config
336
- self.embed_dim = config.hidden_size
337
- self.image_size = config.image_size
338
- self.image_size = config.vit_input_resolution
339
- self.patch_size = config.patch_size
340
-
341
- self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
342
-
343
- self.patch_embedding = nn.Conv2d(
344
- in_channels=config.num_channels,
345
- out_channels=self.embed_dim,
346
- kernel_size=self.patch_size,
347
- stride=self.patch_size,
348
- bias=False,
349
- )
350
-
351
- self.num_patches = (self.image_size // self.patch_size) ** 2
352
-
353
- self.skip_cls_token = skip_cls_token
354
-
355
- self.num_positions = self.num_patches + 1
356
-
357
- self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
358
- if vit_patch > 1:
359
- self.position_embedding = nn.Embedding(self.num_patches * (vit_patch ** 2 + 1) + 1, self.embed_dim)
360
- # 0 支持最大16张图,目前写死了,如需其他的需要额外定义参数
361
- elif vit_patch == 0:
362
- self.position_embedding = nn.Embedding(self.num_patches * (16 ** 2 + 1) + 1, self.embed_dim)
363
- else:
364
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
365
-
366
- if add_pre_layernorm:
367
- self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
368
- else:
369
- self.pre_layernorm = None
370
-
371
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
372
- """
373
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
374
- resolution images.
375
-
376
- Source:
377
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
378
- """
379
- num_patches = embeddings.shape[1] - 1
380
- position_embeddings = self.position_embedding(self.position_ids)
381
- num_positions = position_embeddings.shape[1] - 1
382
- if num_patches == num_positions and height == width:
383
- return position_embeddings
384
- class_pos_embed = position_embeddings[:, 0]
385
- patch_pos_embed = position_embeddings[:, 1:]
386
- dim = embeddings.shape[-1]
387
- h0 = height // self.config.patch_size
388
- w0 = width // self.config.patch_size
389
- # we add a small number to avoid floating point error in the interpolation
390
- # see discussion at https://github.com/facebookresearch/dino/issues/8
391
- h0, w0 = h0 + 0.1, w0 + 0.1
392
- patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
393
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
394
- raw_type = patch_pos_embed.dtype
395
- patch_pos_embed = nn.functional.interpolate(
396
- patch_pos_embed.float(),
397
- scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
398
- mode="bicubic",
399
- align_corners=False,
400
- )
401
- # print(patch_pos_embed.shape)
402
- patch_pos_embed = patch_pos_embed.to(raw_type)
403
- assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
404
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
405
- return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
406
-
407
-
408
- def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False, img_index=None) -> torch.Tensor:
409
- batch_size, num_channels, height, width = pixel_values.shape
410
- patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
411
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
412
- if self.skip_cls_token:
413
- embeddings = patch_embeds
414
- if img_index is None:
415
- position_ids = self.position_ids[:,1:]
416
- embeddings = embeddings + self.position_embedding(position_ids)
417
- else:
418
- position_ids = (torch.tensor(img_index).cuda() * (self.num_positions - 1)).unsqueeze(1).repeat(1, self.num_positions - 1) \
419
- + self.position_ids.expand(batch_size, -1)[:, 1:]
420
- embeddings = embeddings + self.position_embedding(position_ids)
421
- else:
422
- class_embeds = self.class_embedding.expand(batch_size, 1, -1)
423
- embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
424
- if interpolate_pos_encoding:
425
- embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
426
- else:
427
- if img_index is None:
428
- embeddings = embeddings + self.position_embedding(self.position_ids)
429
- else:
430
- position_ids = self.position_ids.expand(batch_size,-1)[:,0].unsqueeze(1)
431
- new_position = (torch.tensor(img_index).cuda() * (self.num_positions -1)).unsqueeze(1).repeat(1,self.num_positions-1) + self.position_ids.expand(batch_size,-1)[:,1:]
432
- position_ids = torch.cat([position_ids,new_position],dim=1)
433
- embeddings = embeddings + self.position_embedding(position_ids)
434
- if self.pre_layernorm is not None:
435
- embeddings = self.pre_layernorm(embeddings)
436
- return embeddings
437
-
438
-
439
- class NaVitTransformer(nn.Module):
440
- def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
441
- super().__init__()
442
- self.config = config
443
- self.vit_config = vit_config
444
- with self.prepare_args(config, vit_config):
445
- self._use_sdpa = config._attn_implementation == "sdpa"
446
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
447
- self.layers = nn.ModuleList(
448
- [HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
449
- )
450
-
451
- @contextmanager
452
- def prepare_args(self, config, vit_config):
453
- hidden_act = config.hidden_act
454
- hidden_size = config.hidden_size
455
- ffn_hidden_size = config.intermediate_size
456
- num_attention_heads = config.num_attention_heads
457
- num_key_value_heads = config.num_key_value_heads
458
- attention_head_dim = config.attention_head_dim
459
- use_qk_norm = config.use_qk_norm
460
- use_rotary_pos_emb = config.use_rotary_pos_emb
461
- num_hidden_layers = config.num_hidden_layers
462
- rms_norm_eps = config.rms_norm_eps
463
- attention_dropout = config.attention_dropout
464
- # hidden_dropout = config.hidden_dropout
465
- norm_type = config.norm_type
466
- attention_bias = config.attention_bias
467
- mlp_bias = config.mlp_bias
468
- use_mla = config.use_mla
469
- num_experts = config.num_experts
470
- _attn_implementation = config._attn_implementation
471
-
472
- config.hidden_act = vit_config.hidden_act
473
- config.hidden_size = vit_config.hidden_size
474
- config.intermediate_size = vit_config.intermediate_size
475
- config.num_attention_heads = vit_config.num_attention_heads
476
- config.num_key_value_heads = None
477
- config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
478
- config.use_qk_norm = False
479
- config.use_rotary_pos_emb = False
480
- config.num_hidden_layers = vit_config.num_hidden_layers
481
- config.rms_norm_eps = vit_config.layer_norm_eps
482
- config.attention_dropout = vit_config.attention_dropout
483
- # config.hidden_dropout = vit_config.hidden_dropout
484
- config.norm_type = config.vit_norm_type
485
- config.attention_bias = True
486
- config.mlp_bias = True
487
- config.use_mla = False
488
- config.num_experts = 1
489
- config._attn_implementation = "eager"
490
-
491
- yield
492
- config.hidden_act = hidden_act
493
- config.hidden_size = hidden_size
494
- config.intermediate_size = ffn_hidden_size
495
- config.num_attention_heads = num_attention_heads
496
- config.num_key_value_heads = num_key_value_heads
497
- config.attention_head_dim = attention_head_dim
498
- config.use_qk_norm = use_qk_norm
499
- config.use_rotary_pos_emb = use_rotary_pos_emb
500
- config.num_hidden_layers = num_hidden_layers
501
- config.rms_norm_eps = rms_norm_eps
502
- config.attention_dropout = attention_dropout
503
- # config.hidden_dropout = hidden_dropout
504
- config.attention_bias = attention_bias
505
- config.mlp_bias = mlp_bias
506
- config.norm_type = norm_type
507
- config.use_mla = use_mla
508
- config.num_experts = num_experts
509
- config._attn_implementation = _attn_implementation
510
-
511
- def forward(
512
- self,
513
- pixel_values: Optional[torch.FloatTensor] = None,
514
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
515
-
516
- hidden_states, attention_mask, img_pos = self.embeddings(pixel_values)
517
- attention_mask = attention_mask.int()
518
- batch_size, seq_length, _ = hidden_states.shape
519
- past_key_values_length = 0
520
-
521
- if self._use_flash_attention_2:
522
- # 2d mask is passed through the layers
523
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
524
- elif self._use_sdpa:
525
- # output_attentions=True can not be supported when using SDPA, and we fall back on
526
- # the manual implementation that requires a 4D causal mask in all cases.
527
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
528
- attention_mask,
529
- (batch_size, seq_length),
530
- hidden_states,
531
- past_key_values_length,
532
- )
533
- else:
534
- attention_mask = _prepare_4d_causal_attention_mask(
535
- attention_mask,
536
- (batch_size, seq_length),
537
- hidden_states,
538
- past_key_values_length,
539
- )
540
-
541
- for layer_idx, decoder_layer in enumerate(self.layers):
542
- layer_outputs = decoder_layer(
543
- hidden_states,
544
- attention_mask=attention_mask
545
- )
546
- hidden_states = layer_outputs[0]
547
-
548
- return hidden_states, img_pos
549
-
550
-
551
- class AnyResVitTransformer(NaVitTransformer):
552
- def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig, anyres_vit_max_image_size):
553
- super().__init__(config, vit_config)
554
- old_anyres_vit_max_image_size = vit_config.max_image_size
555
- anyres_vit_max_image_size = anyres_vit_max_image_size or old_anyres_vit_max_image_size
556
- vit_config.max_image_size = anyres_vit_max_image_size
557
- vit_config.torch_dtype = config.torch_dtype
558
- vit_config.anyres_vit_two_views = config.anyres_vit_two_views
559
- vit_config.vit_remove_prenorm = config.vit_remove_prenorm
560
- vit_config.vit_add_patchemb_bias = config.vit_add_patchemb_bias
561
- self.embeddings = AnyResCLIPVisionEmbeddings(vit_config)
562
- vit_config.max_image_size = old_anyres_vit_max_image_size
563
-
564
- def fix_embeddings_fn(self, pixel_values):
565
- # (B, L, E)
566
- embeddings, hw = self.embeddings.forward_single(pixel_values)
567
- embeddings = self.embeddings.pre_layernorm(embeddings)
568
- return embeddings
569
-
570
-
571
- class CLIPVisionTransformer(nn.Module):
572
- def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
573
- super().__init__()
574
- embed_dim = vit_config.hidden_size
575
-
576
- self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=vit_config.layer_norm_eps)
577
- self.embeddings = CLIPVisionEmbeddings(vit_config, skip_cls_token=config.skip_cls_token, vit_patch=config.vit_patch)
578
-
579
- with self.prepare_args(config, vit_config):
580
- self.layers = nn.ModuleList(
581
- [HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
582
- )
583
-
584
- @contextmanager
585
- def prepare_args(self, config, vit_config):
586
- hidden_act = config.hidden_act
587
- hidden_size = config.hidden_size
588
- ffn_hidden_size = config.intermediate_size
589
- num_attention_heads = config.num_attention_heads
590
- num_key_value_heads = config.num_key_value_heads
591
- attention_head_dim = config.attention_head_dim
592
- use_qk_norm = config.use_qk_norm
593
- use_rotary_pos_emb = config.use_rotary_pos_emb
594
- num_hidden_layers = config.num_hidden_layers
595
- rms_norm_eps = config.rms_norm_eps
596
- attention_dropout = config.attention_dropout
597
- # hidden_dropout = config.hidden_dropout
598
- norm_type = config.norm_type
599
- attention_bias = config.attention_bias
600
- mlp_bias = config.mlp_bias
601
- use_mla = config.use_mla
602
- num_experts = config.num_experts
603
- _attn_implementation = config._attn_implementation
604
-
605
- config.hidden_act = vit_config.hidden_act
606
- config.hidden_size = vit_config.hidden_size
607
- config.intermediate_size = vit_config.intermediate_size
608
- config.num_attention_heads = vit_config.num_attention_heads
609
- config.num_key_value_heads = None
610
- config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
611
- config.use_qk_norm = False
612
- config.use_rotary_pos_emb = False
613
- config.num_hidden_layers = vit_config.num_hidden_layers
614
- config.rms_norm_eps = vit_config.layer_norm_eps
615
- config.attention_dropout = vit_config.attention_dropout
616
- # config.hidden_dropout = 0.0
617
- config.norm_type = "fused"
618
- config.attention_bias = True
619
- config.mlp_bias = True
620
- config.use_mla = False
621
- config.num_experts = 1
622
- config._attn_implementation = "eager"
623
-
624
- yield
625
-
626
- config.hidden_act = hidden_act
627
- config.hidden_size = hidden_size
628
- config.intermediate_size = ffn_hidden_size
629
- config.num_attention_heads = num_attention_heads
630
- config.num_key_value_heads = num_key_value_heads
631
- config.attention_head_dim = attention_head_dim
632
- config.use_qk_norm = use_qk_norm
633
- config.use_rotary_pos_emb = use_rotary_pos_emb
634
- config.num_hidden_layers = num_hidden_layers
635
- config.rms_norm_eps = rms_norm_eps
636
- config.attention_dropout = attention_dropout
637
- # config.hidden_dropout = hidden_dropout
638
- config.norm_type = norm_type
639
- config.attention_bias = attention_bias
640
- config.mlp_bias = mlp_bias
641
- config.use_mla = use_mla
642
- config.num_experts = num_experts
643
- config._attn_implementation = _attn_implementation
644
-
645
- def forward(
646
- self,
647
- pixel_values: Optional[torch.FloatTensor] = None,
648
- interpolate_pos_encoding: Optional[bool] = None,
649
- img_index=None
650
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
651
- r"""
652
- Returns:
653
-
654
- """
655
- hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, img_index=img_index)
656
- hidden_states = self.pre_layrnorm(hidden_states)
657
- batch = hidden_states.shape[0]
658
- seq_len = hidden_states.shape[1]
659
- device = hidden_states.device
660
- attention_mask = torch.ones(batch, 1, seq_len, seq_len, dtype=torch.float32, device=device)
661
-
662
- for layer_idx, decoder_layer in enumerate(self.layers):
663
- layer_outputs = decoder_layer(
664
- hidden_states,
665
- attention_mask=attention_mask
666
- )
667
- hidden_states = layer_outputs[0]
668
-
669
- return hidden_states
670
-
671
-
672
- class Vit(torch.nn.Module):
673
- def __init__(self, config, resampler_token=64, pool_rate=2):
674
- super().__init__()
675
- self.config = config
676
- self.vit_mapping_type = config.vit_mapping_type
677
- self.anyres_vit_max_image_size = config.anyres_vit_max_image_size
678
- self.skip_cls_token = config.skip_cls_token
679
- self.pool_rate = pool_rate
680
- self.vit_type = self.config.vit_type
681
- self.anyres_vit_two_views = self.config.anyres_vit_two_views
682
- if self.vit_type in ['Vit-g', 'Vit-bigG', 'NaVit', 'EvaVit', 'AnyResVit']:
683
- self.img_init(resampler_token, config.vit_input_resolution, config.vit_mapping_type, pool_rate)
684
- else:
685
- raise NotImplementedError(f"unsupported vit type: {self.vit_type}")
686
-
687
- def img_init(self, resampler_token=64, vit_input_resolution=224, vit_mapping_type='resampler', pool_rate=2):
688
- if self.vit_type == 'AnyResVit':
689
- vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
690
- self.vit_config = types.SimpleNamespace(**vit_config["vision_config"])
691
- self.vit_config.image_size = vit_input_resolution
692
- self.vit = AnyResVitTransformer(self.config, self.vit_config, self.anyres_vit_max_image_size)
693
- elif self.vit_type == 'Vit-g':
694
- vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
695
- self.vit_config = types.SimpleNamespace(**{**vit_config["vision_config_dict"],**vit_config["vision_config"]})
696
- self.vit_config.vit_input_resolution = vit_input_resolution
697
- self.vit = CLIPVisionTransformer(self.config, self.vit_config)
698
- else:
699
- assert False, "other vit_types are not supported"
700
-
701
- if self.vit_mapping_type == 'simple_conv_mlp':
702
- self.perceive = SimpleConvMlp(self.vit_config.hidden_size, self.config.hidden_size, self.config.anyres_pooling_size, \
703
- self.config.vit_used_rms_norm, self.config.rms_norm_eps, poolmlp=False, twoview=True)
704
- elif self.vit_mapping_type == 'oryx_mlp':
705
- self.perceive = OryxMLPv2(self.vit_config.hidden_size, self.config.hidden_size, twoview=True, use_pe=False)
706
- elif self.vit_mapping_type == 'mlp':
707
- self.mlp_depth = 2
708
- # one mlp layer already in gpt_model.py
709
- mlp_hidden_size = self.vit_config.hidden_size
710
- if self.vit_type in ['NaVit', 'EvaVit']:
711
- mlp_hidden_size *= self.vit_config.adaptor_patch_size **2
712
- if self.mlp_depth > 1:
713
- mlp_modules = [torch.nn.Linear(mlp_hidden_size, self.config.hidden_size), torch.nn.GELU()]
714
- if self.vit_type in ['NaVit', 'EvaVit']:
715
- for _ in range(1, self.mlp_depth):
716
- mlp_modules.append(torch.nn.Linear(self.config.hidden_size, self.config.hidden_size))
717
- mlp_modules.append(torch.nn.GELU())
718
- self.perceive = torch.nn.Sequential(*mlp_modules)
719
- else:
720
- assert False, "other vit_mapping_types are not supported"
721
-
722
- self.vit_patch_mlp = (self.config.vit_patch > 1 and self.vit_mapping_type == 'mlp') or self.config.vit_patch == 0
723
- for name, param in self.named_parameters():
724
- setattr(param, "is_vit_param", True)
725
-
726
- def forward(self, images, img_index=None):
727
- if self.vit_type in ['AnyResVit']:
728
- dtype = self.config.torch_dtype
729
- device = torch.cuda.current_device()
730
-
731
- images_size = []
732
- for i in range(len(images)):
733
- images_size.append([])
734
- for j in range(len(images[i])):
735
- images_size[i].append((images[i][j].size()[1] // self.vit_config.patch_size, images[i][j].size()[2] // self.vit_config.patch_size))
736
-
737
- images_feats, img_batch_pos = self.vit(pixel_values=images)
738
- a2 = self.vit_config.adaptor_patch_size ** 2
739
-
740
- if self.anyres_vit_two_views:
741
- step = 2
742
- else:
743
- step = 1
744
- perceive_fn = lambda x, img_size, is_video: self.perceive(x, img_size, is_video=is_video)
745
- images_list = []
746
- images_fix_i = 0
747
- num_img_batch_pos = len(img_batch_pos)
748
- for i in range(num_img_batch_pos): # batch_id
749
- for j in range(0, len(img_batch_pos[i]), step):
750
- if self.anyres_vit_two_views:
751
- lower_idx, lower_begin, lower_end = img_batch_pos[i][j]
752
- lower_begin = lower_begin * a2
753
- lower_end = lower_end * a2
754
- higher_idx, higher_begin, higher_end = img_batch_pos[i][j + 1]
755
- higher_begin = higher_begin * a2
756
- higher_end = higher_end * a2
757
- lower_res_feat = images_feats[lower_idx, lower_begin:lower_end].unsqueeze(0)
758
- higher_res_feat = images_feats[higher_idx, higher_begin:higher_end].unsqueeze(0)
759
- lower_images_size = images_size[i][j]
760
- higher_images_size = images_size[i][j + 1]
761
- images_list.append(self.perceive(lower_res_feat, lower_images_size, higher_res_feat, higher_images_size))
762
- else:
763
- idx, begin, end = img_batch_pos[i][j]
764
- begin = begin * a2
765
- end = end * a2
766
- is_video = hasattr(images[i][j],'_is_video') and images[i][j]._is_video
767
- images_list.append(perceive_fn(images_feats[idx, begin:end].unsqueeze(0), images_size[i][j], is_video=is_video))
768
-
769
- images = torch.cat(images_list, dim=1)
770
-
771
- new_batch_pos = []
772
- k = 0; cur_len = 0
773
- for i in range(len(images_size)):
774
- new_batch_pos.append([])
775
- for j in range(0, len(images_size[i]), step):
776
- new_pos = [0, cur_len, cur_len + images_list[k].size(1)]
777
- cur_len += images_list[k].size(1)
778
- k += 1
779
- new_batch_pos[i].append(new_pos)
780
- return images, new_batch_pos
781
- elif self.vit_type == 'Vit-g':
782
- images = self.vit(pixel_values=images, interpolate_pos_encoding=False, img_index=img_index)
783
- else:
784
- assert False, "other vit_types are not supported"
785
-
786
- if self.vit_mapping_type == 'mlp':
787
- if self.vit_type in ['Vit-g'] and not self.skip_cls_token:
788
- images = images[:,1:,:]
789
- b, v, d = images.shape
790
- s = int(math.sqrt(v))
791
- images = images.reshape(b, s, s, d)
792
-
793
-
794
- if self.vit_patch_mlp and img_index is not None:
795
- L_tensor = torch.tensor(img_index)
796
- device = images.device
797
- # 获取子图位置
798
- nonzero_indices = torch.nonzero(L_tensor).squeeze().to(device)
799
- # 获取主图位置
800
- zero_indices = torch.nonzero(L_tensor == 0).squeeze().to(device)
801
-
802
-
803
- images_nonzero = torch.index_select(images,0, nonzero_indices).to(device)
804
- images_zero = torch.index_select(images, 0, zero_indices).to(device)
805
-
806
- # 子图额外多pool一次
807
- pool_rate = self.pool_rate * 2
808
- images_nonzero = images_nonzero.reshape(-1, s // pool_rate, pool_rate, s // pool_rate, pool_rate, d)
809
- images_nonzero = images_nonzero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // pool_rate) * (s // pool_rate), d,
810
- pool_rate*pool_rate).mean(-1)
811
-
812
- # 为了组batch折衷方案
813
- images_nonzero = F.pad(images_nonzero, (0, 0, 0, (s // self.pool_rate) * (s // self.pool_rate)- (s // pool_rate) * (s // pool_rate)))
814
- images_zero = images_zero.reshape(-1, s // self.pool_rate, self.pool_rate, s // self.pool_rate, self.pool_rate, d)
815
- images_zero = images_zero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // self.pool_rate) * (s // self.pool_rate), d,
816
- self.pool_rate*self.pool_rate).mean(-1)
817
- # 组batch
818
- images = torch.zeros(b, (s // self.pool_rate) * (s // self.pool_rate), d).to(device).to(images.dtype)
819
- images.index_copy_(0, nonzero_indices, images_nonzero)
820
- images.index_copy_(0, zero_indices, images_zero)
821
-
822
- if self.mlp_depth >= 2:
823
- images = self.perceive(images)
824
- else:
825
- if s % self.pool_rate == 0:
826
- images = images.reshape(b, s//self.pool_rate, self.pool_rate, s//self.pool_rate, self.pool_rate, d)
827
- images = images.permute(0, 1, 3, 5, 2, 4).reshape(b, (s//self.pool_rate) * (s//self.pool_rate), d, -1).mean(-1)
828
- if self.mlp_depth >= 2:
829
- images = self.perceive(images)
830
- else:
831
- raise ValueError
832
- return images
833
-
834
-
835
- class SimpleConvMlp(nn.Module):
836
- def __init__(self, in_channels, out_channels, anyres_pooling_size, vit_used_rms_norm, rms_norm_eps, twoview=False, poolmlp=True, cat_extra_token=True):
837
- super().__init__()
838
-
839
- embed_std = 1 / math.sqrt(out_channels)
840
- if poolmlp:
841
- # if args.learnable_mlp_pooling_size is not None:
842
- # in_channels *= args.learnable_mlp_pooling_size ** 2
843
- self.proj = nn.Sequential(
844
- nn.Linear(in_channels, out_channels),
845
- nn.GELU()
846
- )
847
- self.vit_linear_encoder = nn.Linear(out_channels, out_channels)
848
- self.image_newline = nn.Parameter(
849
- torch.randn(out_channels) * embed_std
850
- )
851
- else:
852
- self.proj = nn.Sequential(
853
- nn.Conv2d(in_channels, in_channels * 2, kernel_size=anyres_pooling_size, stride=anyres_pooling_size),
854
- nn.GELU(),
855
- nn.Conv2d(in_channels * 2, in_channels * 4, kernel_size=1),
856
- )
857
- self.mlp = nn.Linear(in_channels * 4, out_channels)
858
- self.image_newline = nn.Parameter(
859
- torch.randn(in_channels * 4) * embed_std
860
- )
861
- self.poolmlp = poolmlp
862
-
863
- self.image_begin = nn.Parameter(
864
- torch.randn(out_channels) * embed_std
865
- )
866
- self.image_end = nn.Parameter(
867
- torch.randn(out_channels) * embed_std
868
- )
869
-
870
- if twoview:
871
- self.image_sep = nn.Parameter(
872
- torch.randn(out_channels) * embed_std
873
- )
874
-
875
- self.cat_extra_token = cat_extra_token
876
- self.use_rms_norm = vit_used_rms_norm
877
- if self.use_rms_norm:
878
- self.before_rms = HunYuanRMSNorm(in_channels, eps=rms_norm_eps)
879
- self.after_rms = HunYuanRMSNorm(out_channels, eps=rms_norm_eps)
880
-
881
- def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
882
- return self.single_forward(x=x, size=size, x2=x2, size2=size2, is_video=is_video)
883
-
884
- def single_forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
885
- remove_vit_special_tokens = False
886
- learnable_mlp_pooling_size = None
887
- if self.use_rms_norm:
888
- x = self.before_rms(x)
889
- h, w = size
890
- dtype = x.dtype
891
- x = x.permute(0, 2, 1).reshape(x.shape[0], -1, h, w)
892
- if self.poolmlp:
893
- if learnable_mlp_pooling_size is None:
894
- x = F.avg_pool2d(x, anyres_pooling_size)
895
- x = self.proj(x.permute(0, 2, 3, 1)) # b, h, w, c
896
- else:
897
- x = x.permute(0, 2, 3, 1) # b, h, w, c
898
- x = x.reshape(x.shape[0], h // learnable_mlp_pooling_size, learnable_mlp_pooling_size,
899
- w // learnable_mlp_pooling_size, learnable_mlp_pooling_size, -1)
900
- x = x.permute(0, 1, 3, 2, 4, 5).reshape(x.shape[0], h // learnable_mlp_pooling_size, w // learnable_mlp_pooling_size, -1)
901
- x = self.proj(x)
902
- x = self.vit_linear_encoder(x)
903
- b, h, w, c = x.shape
904
- if not remove_vit_special_tokens:
905
- x = torch.cat([
906
- x,
907
- self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype, non_blocking=True)
908
- ], dim=2)
909
- x = x.reshape(b, -1, c)
910
- else:
911
- x = self.proj(x) #b,c,h,w
912
- if is_video:
913
- video_avgpool_size = 2
914
- stride = 2
915
- x = F.avg_pool2d(x, kernel_size = video_avgpool_size, stride = stride)
916
- b, c, h, w = x.shape
917
- if not remove_vit_special_tokens:
918
- x = torch.cat([
919
- x,
920
- self.image_newline.reshape(1, c, 1, 1).expand(b, c, h, 1).to(dtype, non_blocking=True)
921
- ], dim=-1)
922
- x = x.reshape(b, c, -1).permute(0, 2, 1)
923
- x = self.mlp(x)
924
-
925
-
926
- if x2 is not None:
927
- h2, w2 = size2
928
- x2 = x2.permute(0, 2, 1).reshape(x2.shape[0], -1, h2, w2)
929
- if self.poolmlp:
930
- x2 = F.avg_pool2d(x2, 2)
931
- x2 = self.proj(x2.permute(0, 2, 3, 1)) # b, h, w, c
932
- x2 = self.vit_linear_encoder(x2)
933
- b2, h2, w2, c2 = x2.shape
934
- if not remove_vit_special_tokens:
935
- x2 = torch.cat([
936
- x2,
937
- self.image_newline.reshape(1, 1, 1, c2).expand(b2, h2, 1, c2).to(dtype, non_blocking=True)
938
- ], dim=2)
939
- x2 = x2.reshape(b2, -1, c2)
940
- else:
941
- x2 = self.proj(x2)
942
- b2, c2, h2, w2 = x2.shape
943
- if not remove_vit_special_tokens:
944
- x2 = torch.cat([
945
- x2,
946
- self.image_newline.reshape(1, c2, 1, 1).expand(b2, c2, h2, 1).to(dtype, non_blocking=True)
947
- ], dim=-1)
948
- x2 = x2.reshape(b2, c2, -1).permute(0, 2, 1) #b,n,c
949
- x2 = self.mlp(x2)
950
-
951
- sep = self.image_sep.reshape(1, 1, -1).expand(b2, 1, x2.shape[-1]).to(dtype, non_blocking=True)
952
-
953
- x = torch.cat([x, sep, x2], dim=1)
954
-
955
- if self.cat_extra_token:
956
- begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
957
- end = self.image_end.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
958
- x = torch.cat([begin, x, end], dim=1)
959
-
960
- if self.use_rms_norm:
961
- return self.after_rms(x)
962
- else:
963
- return x
964
-
965
-
966
- class NormalizedDwPooler(nn.Module):
967
- def __init__(self, dim):
968
- super().__init__()
969
- self.dim = dim
970
- self.predictor = nn.Sequential(
971
- nn.Linear(dim*2, dim),
972
- nn.GELU(),
973
- nn.Linear(dim, dim),
974
- )
975
-
976
- def forward(self, x, forward_type='2x'):
977
- B, H, W, C = x.shape
978
-
979
- if forward_type == '2x':
980
- new_x = x.reshape(B, H//2, 2, W//2, 2, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//2, W//2, 4, C)
981
- pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 4, -1)
982
- fused_x = torch.cat([new_x, pooled_x], dim=-1)
983
- elif forward_type == '1x':
984
- new_x = x.reshape(B, H, W, 1, C)
985
- fused_x = torch.cat([new_x, new_x], dim=-1)
986
- elif forward_type == '4x':
987
- new_x = x.reshape(B, H//4, 4, W//4, 4, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//4, W//4, 16, C)
988
- pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 16, -1)
989
- fused_x = torch.cat([new_x, pooled_x], dim=-1)
990
-
991
- score = self.predictor(fused_x)
992
- normalized_score = F.softmax(score, dim=-2)
993
- new_x = (new_x * normalized_score).sum(dim=-2)
994
- return new_x
995
-
996
-
997
- class OryxMLPv2(nn.Module):
998
- def __init__(self, in_channels, out_channels, twoview=False, use_pe=False):
999
- super().__init__()
1000
-
1001
- self.proj1 = nn.Linear(in_channels, out_channels)
1002
- self.proj2 = nn.Linear(out_channels, out_channels)
1003
- self.act = nn.GELU()
1004
- self.pooler = NormalizedDwPooler(out_channels)
1005
- embed_std = 1 / math.sqrt(out_channels)
1006
-
1007
- self.use_pe = use_pe
1008
- if not use_pe:
1009
- self.image_newline = nn.Parameter(
1010
- torch.randn(out_channels) * embed_std
1011
- )
1012
- self.image_begin = nn.Parameter(
1013
- torch.randn(out_channels) * embed_std
1014
- )
1015
- self.image_end = nn.Parameter(
1016
- torch.randn(out_channels) * embed_std
1017
- )
1018
-
1019
- if twoview:
1020
- self.image_sep = nn.Parameter(
1021
- torch.randn(out_channels) * embed_std
1022
- )
1023
-
1024
- def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
1025
- h, w = size
1026
- dtype = x.dtype
1027
- x = x.reshape(x.shape[0], h, w, -1)
1028
- # x = self.pooler(x, forward_type=REGIONAL_POOL)
1029
- # x = self.proj(x) #b,h,w, c
1030
- x = self.proj1(x)
1031
- x = self.pooler(x, forward_type='2x')
1032
- x = self.act(x)
1033
- x = self.proj2(x)
1034
-
1035
-
1036
- b, h, w, c = x.shape
1037
- if not self.use_pe:
1038
- x = torch.cat([
1039
- x,
1040
- self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype)
1041
- ], dim=2)
1042
- else:
1043
- pe_h = torch.arange(h, dtype=torch.long, device=x.device).reshape(1, h, 1, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
1044
- pe_w = torch.arange(w, dtype=torch.long, device=x.device).reshape(1, 1, w, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
1045
- pe = torch.cat([pe_h, pe_w], dim=-1)
1046
-
1047
- x = x.reshape(b, -1, c)
1048
-
1049
- if x2 is not None:
1050
- h2, w2 = size2
1051
- x2 = x2.reshape(x2.shape[0], h2, w2, -1)
1052
- # x2 = self.pooler(x2, forward_type=REGIONAL_POOL)
1053
- ## x2 = self.proj(x2) #b,h,w, c
1054
- x2 = self.proj1(x2)
1055
- x2 = self.pooler(x2, forward_type='2x')
1056
- x2 = self.act(x2)
1057
- x2 = self.proj2(x2)
1058
-
1059
- b2, h2, w2, c2 = x2.shape
1060
- if not self.use_pe:
1061
- x2 = torch.cat([
1062
- x2,
1063
- self.image_newline.reshape(1, 1, 1, c).expand(b, h2, 1, c).to(dtype)
1064
- ], dim=2)
1065
- x2 = x2.reshape(b, -1, c)
1066
- sep = self.image_sep.reshape(1, 1, -1).expand(b, 1, c2).to(dtype)
1067
- x = torch.cat([x, sep, x2], dim=1)
1068
-
1069
- begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
1070
- end = self.image_end.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
1071
- x = torch.cat([begin, x, end], dim=1)
1072
- # print(x.shape, x2.shape, h, w, h2, w2)
1073
- # print("vit rank = " + str(torch.distributed.get_rank()) +" x = " + str(x))
1074
- if self.use_pe:
1075
- zero_pad = torch.zeros(b, 1, 2, device=x.device, dtype=torch.long)
1076
- pe = torch.cat([zero_pad, pe, zero_pad], dim=1)
1077
- assert pe.shape[1] == x.shape[1]
1078
- return x, pe
1079
- else:
1080
- nseq = x.shape[1]
1081
- fake_pe = torch.zeros(b, nseq, 2, device=x.device, dtype=torch.long)
1082
- return x #, fake_pe
1083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Usage and Legal Notices:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ Tencent is pleased to support the open source community by making Tencent Hunyuan A13B available.
4
+
5
+ Copyright (C) Tencent. All rights reserved. The below software and/or models in this distribution may have been modified by Tencent ("Tencent Modifications"). All Tencent Modifications are Copyright (C) Tencent.
6
+
7
+ Tencent Hunyuan A13B is licensed under TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT, which can be found in this repository called "LICENSE", except for the third-party components listed below. Tencent Hunyuan A13B does not impose any additional limitations beyond what is outlined in the respective licenses of these third-party components. Users must comply with all terms and conditions of original licenses of these third-party components and must ensure that the usage of the third party components adheres to all relevant laws and regulations.
8
+
9
+ For avoidance of doubts, Tencent Hunyuan A13B refers to the inference code, training code, parameters and the weights of Tencent Hunyuan A13B only, which are made publicly available by Tencent in accordance with the TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
10
+
11
+
12
+ Other dependencies and licenses:
13
+
14
+
15
+ Open Source Software Licensed under the Apache License Version 2.0:
16
+ The below software in this distribution may have been modified by Tencent ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2025 Tencent.
17
+ --------------------------------------------------------------------
18
+ 1. pytorch
19
+ Copyright 2016-2017 TorchAPI
20
+ Copyright 2016-2017 Contributors
21
+
22
+ 2. VLLM
23
+ Copyright (c) vllm original author and authors
24
+ Please note this software has been modified by Tencent in this distribution.
25
+
26
+ 3. transformers
27
+ Copyright 2018- The Hugging Face team. All rights reserved.
28
+
29
+ 4. accelerate
30
+ Copyright (c) accelerate original author and authors
31
+
32
+
33
+ Terms of the Apache License Version 2.0:
34
+ --------------------------------------------------------------------
35
+ Apache License
36
+
37
+ Version 2.0, January 2004
38
+
39
+ http://www.apache.org/licenses/
40
+
41
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
42
+ 1. Definitions.
43
+
44
+ "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
45
+
46
+ "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
47
+
48
+ "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
49
+
50
+ "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.
51
+
52
+ "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
53
+
54
+ "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
55
+
56
+ "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
57
+
58
+ "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
59
+
60
+ "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
63
+
64
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
65
+
66
+ 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
67
+
68
+ 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
69
+
70
+ You must give any other recipients of the Work or Derivative Works a copy of this License; and
71
+
72
+ You must cause any modified files to carry prominent notices stating that You changed the files; and
73
+
74
+ You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
75
+
76
+ If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
77
+
78
+ You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
79
+
80
+ 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
81
+
82
+ 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
83
+
84
+ 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
85
+
86
+ 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
87
+
88
+ 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
89
+
90
+ END OF TERMS AND CONDITIONS
91
+
92
+
93
+
94
+ Open Source Software Licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein:
95
+ --------------------------------------------------------------------
96
+ 1. pytorch
97
+ Copyright (c) 2016- Facebook, Inc (Adam Paszke)
98
+ Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
99
+ Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
100
+ Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
101
+ Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
102
+ Copyright (c) 2011-2013 NYU (Clement Farabet)
103
+ Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
104
+ Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
105
+ Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
106
+
107
+
108
+ Terms of the BSD 3-Clause:
109
+ --------------------------------------------------------------------
110
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
111
+
112
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
113
+
114
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
115
+
116
+ 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
117
+
118
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
119
+
120
+ For the license of other third party components, please refer to the following URL:
121
+ https://github.com/pytorch/pytorch/blob/v2.1.1/NOTICE
122
+ https://github.com/pytorch/pytorch/tree/v2.1.1/third_party
123
+
124
+
125
+ Open Source Software Licensed under the BSD 3-Clause License:
126
+ --------------------------------------------------------------------
127
+ 1. flash_attn
128
+ Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
129
+ All rights reserved.
130
+
131
+
132
+ A copy of the BSD 3-Clause is included in this file.
133
+
134
+
135
+
136
+ Open Source Software Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
137
+ The below software in this distribution is modified by Tencent ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2025 Tencent.
138
+ --------------------------------------------------------------------
139
+ 1. sglang
140
+ Copyright 2023-2024 SGLang Team
141
+
142
+
143
+ A copy of the Apache 2.0 is included in this file.
144
+
145
+ For the license of other third party components, please refer to the following URL:
146
+ https://github.com/sgl-project/sglang/tree/v0.4.7/3rdparty/amd
147
+
148
+
149
+
150
+ Open Source Software Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
151
+ The below software in this distribution is modified by Tencent ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2025 Tencent.
152
+ --------------------------------------------------------------------
153
+ 1. TensorRT-LLM
154
+ Copyright (c) TensorRT-LLM original author and authors
155
+
156
+
157
+ A copy of the Apache 2.0 is included in this file.
158
+
159
+ For the license of other third party components, please refer to the following URL:
160
+ https://github.com/NVIDIA/TensorRT-LLM/tree/v0.20.0/3rdparty