Upload ./hunyuan.py with huggingface_hub
Browse files- hunyuan.py +879 -0
hunyuan.py
ADDED
@@ -0,0 +1,879 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
3 |
+
#
|
4 |
+
""" PyTorch HunYuan model."""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import Tensor
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
from torch import nn
|
15 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
16 |
+
|
17 |
+
from transformers.activations import ACT2FN
|
18 |
+
from transformers.cache_utils import Cache, DynamicCache
|
19 |
+
from transformers.modeling_attn_mask_utils import (
|
20 |
+
AttentionMaskConverter,
|
21 |
+
_prepare_4d_attention_mask,
|
22 |
+
_prepare_4d_causal_attention_mask,
|
23 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
24 |
+
)
|
25 |
+
from transformers.modeling_outputs import (
|
26 |
+
BaseModelOutputWithPast,
|
27 |
+
CausalLMOutputWithPast,
|
28 |
+
SequenceClassifierOutputWithPast
|
29 |
+
)
|
30 |
+
from transformers.modeling_utils import PreTrainedModel
|
31 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
32 |
+
from transformers.utils import (
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
is_flash_attn_2_available,
|
36 |
+
is_flash_attn_greater_or_equal_2_10,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
41 |
+
from transformers.generation.utils import GenerateOutput
|
42 |
+
from .configuration_hunyuan import HunYuanConfig
|
43 |
+
from .modeling_hunyuan import HunYuanDecoderLayer, HunYuanRMSNorm
|
44 |
+
from .vit_model import NaVitForward, VitForward, Vit
|
45 |
+
|
46 |
+
|
47 |
+
if is_flash_attn_2_available():
|
48 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
49 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
50 |
+
|
51 |
+
|
52 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
53 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
54 |
+
if is_torch_fx_available():
|
55 |
+
if not is_torch_greater_or_equal_than_1_13:
|
56 |
+
import torch.fx
|
57 |
+
|
58 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
_CONFIG_FOR_DOC = "HunYuanConfig"
|
63 |
+
|
64 |
+
|
65 |
+
HUNYUAN_START_DOCSTRING = r"""
|
66 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
67 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
68 |
+
etc.)
|
69 |
+
|
70 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
71 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
72 |
+
and behavior.
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
config ([`HunYuanConfig`]):
|
76 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
77 |
+
load the weights associated with the model, only the configuration. Check out the
|
78 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
@add_start_docstrings(
|
83 |
+
"The bare HunYuan Model outputting raw hidden-states without any specific head on top.",
|
84 |
+
HUNYUAN_START_DOCSTRING,
|
85 |
+
)
|
86 |
+
class HunYuanPreTrainedModel(PreTrainedModel):
|
87 |
+
config_class = HunYuanConfig
|
88 |
+
base_model_prefix = "model"
|
89 |
+
supports_gradient_checkpointing = True
|
90 |
+
_no_split_modules = ["HunYuanDecoderLayer"]
|
91 |
+
_skip_keys_device_placement = "past_key_values"
|
92 |
+
_supports_flash_attn_2 = True
|
93 |
+
_supports_sdpa = True
|
94 |
+
_supports_cache_class = True
|
95 |
+
|
96 |
+
def _init_weights(self, module):
|
97 |
+
std = self.config.initializer_range
|
98 |
+
if isinstance(module, nn.Linear):
|
99 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
100 |
+
if module.bias is not None:
|
101 |
+
module.bias.data.zero_()
|
102 |
+
elif isinstance(module, nn.Embedding):
|
103 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
104 |
+
if module.padding_idx is not None:
|
105 |
+
module.weight.data[module.padding_idx].zero_()
|
106 |
+
|
107 |
+
|
108 |
+
HUNYUAN_INPUTS_DOCSTRING = r"""
|
109 |
+
Args:
|
110 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
111 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
112 |
+
it.
|
113 |
+
|
114 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
115 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
116 |
+
|
117 |
+
[What are input IDs?](../glossary#input-ids)
|
118 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
119 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
120 |
+
|
121 |
+
- 1 for tokens that are **not masked**,
|
122 |
+
- 0 for tokens that are **masked**.
|
123 |
+
|
124 |
+
[What are attention masks?](../glossary#attention-mask)
|
125 |
+
|
126 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
127 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
128 |
+
|
129 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
130 |
+
`past_key_values`).
|
131 |
+
|
132 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
133 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
134 |
+
information on the default strategy.
|
135 |
+
|
136 |
+
- 1 indicates the head is **not masked**,
|
137 |
+
- 0 indicates the head is **masked**.
|
138 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
139 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
140 |
+
config.n_positions - 1]`.
|
141 |
+
|
142 |
+
[What are position IDs?](../glossary#position-ids)
|
143 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
144 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
145 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
146 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
147 |
+
|
148 |
+
Two formats are allowed:
|
149 |
+
- a [`~cache_utils.Cache`] instance;
|
150 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
151 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
152 |
+
cache format.
|
153 |
+
|
154 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
155 |
+
legacy cache format will be returned.
|
156 |
+
|
157 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
158 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
159 |
+
of shape `(batch_size, sequence_length)`.
|
160 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
161 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
162 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
163 |
+
model's internal embedding lookup matrix.
|
164 |
+
use_cache (`bool`, *optional*):
|
165 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
166 |
+
`past_key_values`).
|
167 |
+
output_attentions (`bool`, *optional*):
|
168 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
169 |
+
tensors for more detail.
|
170 |
+
output_hidden_states (`bool`, *optional*):
|
171 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
172 |
+
more detail.
|
173 |
+
return_dict (`bool`, *optional*):
|
174 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
175 |
+
"""
|
176 |
+
|
177 |
+
|
178 |
+
@add_start_docstrings(
|
179 |
+
"The bare HunYuan Model outputting raw hidden-states without any specific head on top.",
|
180 |
+
HUNYUAN_START_DOCSTRING,
|
181 |
+
)
|
182 |
+
class HunYuanModel(HunYuanPreTrainedModel):
|
183 |
+
"""
|
184 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HunYuanDecoderLayer`]
|
185 |
+
|
186 |
+
Args:
|
187 |
+
config: HunYuanConfig
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(self, config: HunYuanConfig):
|
191 |
+
super().__init__(config)
|
192 |
+
self.padding_idx = config.pad_token_id
|
193 |
+
self.vocab_size = config.vocab_size
|
194 |
+
self.add_classification_head = config.add_classification_head
|
195 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
196 |
+
self.layers = nn.ModuleList(
|
197 |
+
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
198 |
+
)
|
199 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
200 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
201 |
+
if not config.add_classification_head:
|
202 |
+
self.norm = HunYuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
203 |
+
|
204 |
+
self.cla = config.use_cla
|
205 |
+
self.cla_share_factor = config.cla_share_factor
|
206 |
+
|
207 |
+
self.gradient_checkpointing = False
|
208 |
+
# Initialize weights and apply final processing
|
209 |
+
self.post_init()
|
210 |
+
|
211 |
+
def get_input_embeddings(self):
|
212 |
+
return self.embed_tokens
|
213 |
+
|
214 |
+
def set_input_embeddings(self, value):
|
215 |
+
self.embed_tokens = value
|
216 |
+
|
217 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
input_ids: torch.LongTensor = None,
|
221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
222 |
+
position_ids: Optional[torch.LongTensor] = None,
|
223 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
224 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
225 |
+
use_cache: Optional[bool] = None,
|
226 |
+
output_attentions: Optional[bool] = None,
|
227 |
+
output_hidden_states: Optional[bool] = None,
|
228 |
+
return_dict: Optional[bool] = None,
|
229 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
230 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
231 |
+
output_hidden_states = (
|
232 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
233 |
+
)
|
234 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
235 |
+
|
236 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
237 |
+
|
238 |
+
# retrieve input_ids and inputs_embeds
|
239 |
+
# if input_ids is not None and inputs_embeds is not None:
|
240 |
+
# raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
241 |
+
if input_ids is not None:
|
242 |
+
batch_size, seq_length = input_ids.shape[:2]
|
243 |
+
elif inputs_embeds is not None:
|
244 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
245 |
+
else:
|
246 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
247 |
+
|
248 |
+
if self.gradient_checkpointing and self.training:
|
249 |
+
if use_cache:
|
250 |
+
logger.warning_once(
|
251 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
252 |
+
)
|
253 |
+
use_cache = False
|
254 |
+
|
255 |
+
past_key_values_length = 0
|
256 |
+
if use_cache:
|
257 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
258 |
+
if use_legacy_cache:
|
259 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
260 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
261 |
+
|
262 |
+
if position_ids is None:
|
263 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
264 |
+
position_ids = torch.arange(
|
265 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
266 |
+
)
|
267 |
+
position_ids = position_ids.unsqueeze(0)
|
268 |
+
|
269 |
+
if inputs_embeds is None:
|
270 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
271 |
+
|
272 |
+
# Fix lora with gradient checkpointing training
|
273 |
+
if self.training and inputs_embeds.is_leaf:
|
274 |
+
inputs_embeds.requires_grad = True
|
275 |
+
|
276 |
+
if self._use_flash_attention_2:
|
277 |
+
# 2d mask is passed through the layers
|
278 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
279 |
+
elif self._use_sdpa and not output_attentions:
|
280 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
281 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
282 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
283 |
+
attention_mask,
|
284 |
+
(batch_size, seq_length),
|
285 |
+
inputs_embeds,
|
286 |
+
past_key_values_length,
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
# 4d mask is passed through the layers
|
290 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
291 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
292 |
+
)
|
293 |
+
|
294 |
+
# embed positions
|
295 |
+
hidden_states = inputs_embeds
|
296 |
+
|
297 |
+
# decoder layers
|
298 |
+
all_hidden_states = () if output_hidden_states else None
|
299 |
+
all_self_attns = () if output_attentions else None
|
300 |
+
next_decoder_cache = None
|
301 |
+
|
302 |
+
prev_kv_states = None
|
303 |
+
for layer_idx, decoder_layer in enumerate(self.layers):
|
304 |
+
if output_hidden_states:
|
305 |
+
all_hidden_states += (hidden_states,)
|
306 |
+
|
307 |
+
if self.gradient_checkpointing and self.training:
|
308 |
+
layer_outputs = self._gradient_checkpointing_func(
|
309 |
+
decoder_layer.__call__,
|
310 |
+
hidden_states,
|
311 |
+
attention_mask,
|
312 |
+
position_ids,
|
313 |
+
past_key_values,
|
314 |
+
output_attentions,
|
315 |
+
use_cache,
|
316 |
+
prev_kv_states,
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
layer_outputs = decoder_layer(
|
320 |
+
hidden_states,
|
321 |
+
attention_mask=attention_mask,
|
322 |
+
position_ids=position_ids,
|
323 |
+
past_key_value=past_key_values,
|
324 |
+
output_attentions=output_attentions,
|
325 |
+
use_cache=use_cache,
|
326 |
+
kv_states=prev_kv_states
|
327 |
+
)
|
328 |
+
|
329 |
+
hidden_states = layer_outputs[0]
|
330 |
+
|
331 |
+
if use_cache:
|
332 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
333 |
+
|
334 |
+
if output_attentions:
|
335 |
+
all_self_attns += (layer_outputs[1],)
|
336 |
+
|
337 |
+
kv_states = layer_outputs[-1]
|
338 |
+
|
339 |
+
if self.cla and layer_idx % self.cla_share_factor == 0:
|
340 |
+
prev_kv_states = kv_states
|
341 |
+
if not self.add_classification_head:
|
342 |
+
hidden_states = self.norm(hidden_states)
|
343 |
+
|
344 |
+
# add hidden states from the last decoder layer
|
345 |
+
if output_hidden_states:
|
346 |
+
all_hidden_states += (hidden_states,)
|
347 |
+
|
348 |
+
next_cache = None
|
349 |
+
if use_cache:
|
350 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
351 |
+
if not return_dict:
|
352 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
353 |
+
return BaseModelOutputWithPast(
|
354 |
+
last_hidden_state=hidden_states,
|
355 |
+
past_key_values=next_cache,
|
356 |
+
hidden_states=all_hidden_states,
|
357 |
+
attentions=all_self_attns,
|
358 |
+
)
|
359 |
+
|
360 |
+
|
361 |
+
class HunYuanMoEV1ForCausalLM(HunYuanPreTrainedModel):
|
362 |
+
_tied_weights_keys = ["lm_head.weight"]
|
363 |
+
|
364 |
+
def __init__(self, config: HunYuanConfig):
|
365 |
+
super().__init__(config)
|
366 |
+
if config.vit_path is not None:
|
367 |
+
if "-tp" in config.vit_type:
|
368 |
+
config.vit_type = config.vit_type.replace("-tp", "")
|
369 |
+
self.vit_type = config.vit_type
|
370 |
+
if self.vit_type not in ['NaVit', 'EvaVit']:
|
371 |
+
if config.vit_mapping_type == 'mlp':
|
372 |
+
self.vit_linear_encoder = torch.nn.Linear(config.hidden_size, config.hidden_size)
|
373 |
+
self.vit = Vit(config)
|
374 |
+
else:
|
375 |
+
self.vit = None
|
376 |
+
self.config = config
|
377 |
+
self.model = HunYuanModel(config)
|
378 |
+
self.add_classification_head = config.add_classification_head
|
379 |
+
self.pad_id = config.pad_id
|
380 |
+
self.vocab_size = config.vocab_size
|
381 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
382 |
+
if config.add_classification_head:
|
383 |
+
self.pool_head = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
384 |
+
self.pool_head2 = nn.Linear(config.hidden_size, config.class_num, bias=False)
|
385 |
+
# Initialize weights and apply final processing
|
386 |
+
self.post_init()
|
387 |
+
|
388 |
+
def get_input_embeddings(self):
|
389 |
+
return self.model.embed_tokens
|
390 |
+
|
391 |
+
def set_input_embeddings(self, value):
|
392 |
+
self.model.embed_tokens = value
|
393 |
+
|
394 |
+
def get_output_embeddings(self):
|
395 |
+
return self.lm_head
|
396 |
+
|
397 |
+
def set_output_embeddings(self, new_embeddings):
|
398 |
+
self.lm_head = new_embeddings
|
399 |
+
|
400 |
+
def set_decoder(self, decoder):
|
401 |
+
self.model = decoder
|
402 |
+
|
403 |
+
def get_decoder(self):
|
404 |
+
return self.model
|
405 |
+
|
406 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
407 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
408 |
+
def forward(
|
409 |
+
self,
|
410 |
+
input_ids: torch.LongTensor = None,
|
411 |
+
attention_mask: Optional[torch.Tensor] = None,
|
412 |
+
position_ids: Optional[torch.LongTensor] = None,
|
413 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
414 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
415 |
+
labels: Optional[torch.LongTensor] = None,
|
416 |
+
use_cache: Optional[bool] = None,
|
417 |
+
output_attentions: Optional[bool] = None,
|
418 |
+
output_hidden_states: Optional[bool] = None,
|
419 |
+
return_dict: Optional[bool] = None,
|
420 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
421 |
+
r"""
|
422 |
+
Args:
|
423 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
424 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
425 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
426 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
|
430 |
+
Example:
|
431 |
+
|
432 |
+
```python
|
433 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
434 |
+
|
435 |
+
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
436 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
437 |
+
|
438 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
439 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
440 |
+
|
441 |
+
>>> # Generate
|
442 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
443 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
444 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
445 |
+
```"""
|
446 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
447 |
+
output_hidden_states = (
|
448 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
449 |
+
)
|
450 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
451 |
+
|
452 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
453 |
+
outputs = self.model(
|
454 |
+
input_ids=input_ids,
|
455 |
+
attention_mask=attention_mask,
|
456 |
+
position_ids=position_ids,
|
457 |
+
past_key_values=past_key_values,
|
458 |
+
inputs_embeds=inputs_embeds,
|
459 |
+
use_cache=use_cache,
|
460 |
+
output_attentions=output_attentions,
|
461 |
+
output_hidden_states=output_hidden_states,
|
462 |
+
return_dict=return_dict,
|
463 |
+
)
|
464 |
+
|
465 |
+
hidden_states = outputs[0]
|
466 |
+
|
467 |
+
if not self.add_classification_head:
|
468 |
+
if self.config.pretraining_tp > 1:
|
469 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
470 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
471 |
+
logits = torch.cat(logits, dim=-1)
|
472 |
+
else:
|
473 |
+
logits = self.lm_head(hidden_states)
|
474 |
+
logits = logits.float()
|
475 |
+
else:
|
476 |
+
logits = hidden_states
|
477 |
+
logits = logits.float()
|
478 |
+
pooled_output = self.pool_head(logits)
|
479 |
+
pooled_output = torch.tanh(pooled_output)
|
480 |
+
pooled_output = self.pool_head2(pooled_output).contiguous() # bs * class_num
|
481 |
+
if len(pooled_output.shape) < 2:
|
482 |
+
raise ValueError("pooled_output does not have enough dimensions for transpose")
|
483 |
+
|
484 |
+
if self.config.pool_type == "mean":
|
485 |
+
reward = pooled_output.mean(dim=1).squeeze(-1)
|
486 |
+
elif self.config.pool_type == "last":
|
487 |
+
# bs * hidden_size
|
488 |
+
seq_length = (input_ids != self.pad_id).long().sum(dim=1) - 1
|
489 |
+
batch_size = input_ids.size(0)
|
490 |
+
reward = pooled_output[torch.arange(batch_size, device=pooled_output.device), seq_length].squeeze(-1)
|
491 |
+
else:
|
492 |
+
reward = pooled_output[:, 0].squeeze(-1)
|
493 |
+
|
494 |
+
loss = None
|
495 |
+
if labels is not None:
|
496 |
+
# Shift so that tokens < n predict n
|
497 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
498 |
+
shift_labels = labels[..., 1:].contiguous()
|
499 |
+
# Flatten the tokens
|
500 |
+
loss_fct = CrossEntropyLoss()
|
501 |
+
shift_logits = shift_logits.reshape(-1, self.config.vocab_size)
|
502 |
+
shift_labels = shift_labels.reshape(-1)
|
503 |
+
# Enable model parallelism
|
504 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
505 |
+
loss = loss_fct(shift_logits, shift_labels)
|
506 |
+
|
507 |
+
if not return_dict:
|
508 |
+
output = (logits,) + outputs[1:]
|
509 |
+
return (loss,) + output if loss is not None else output
|
510 |
+
|
511 |
+
output = CausalLMOutputWithPast(
|
512 |
+
loss=loss,
|
513 |
+
logits=logits,
|
514 |
+
past_key_values=outputs.past_key_values,
|
515 |
+
hidden_states=outputs.hidden_states,
|
516 |
+
attentions=outputs.attentions,
|
517 |
+
)
|
518 |
+
if self.add_classification_head:
|
519 |
+
output['reward'] = reward
|
520 |
+
|
521 |
+
return output
|
522 |
+
|
523 |
+
def prepare_inputs_for_generation(
|
524 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
525 |
+
):
|
526 |
+
if past_key_values is not None:
|
527 |
+
if isinstance(past_key_values, Cache):
|
528 |
+
cache_length = past_key_values.get_seq_length()
|
529 |
+
past_length = past_key_values.seen_tokens
|
530 |
+
max_cache_length = past_key_values.get_max_length()
|
531 |
+
else:
|
532 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
533 |
+
max_cache_length = None
|
534 |
+
|
535 |
+
# Keep only the unprocessed tokens:
|
536 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
537 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
538 |
+
# input)
|
539 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
540 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
541 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
542 |
+
# input_ids based on the past_length.
|
543 |
+
elif past_length < input_ids.shape[1]:
|
544 |
+
input_ids = input_ids[:, past_length:]
|
545 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
546 |
+
|
547 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
548 |
+
if (
|
549 |
+
max_cache_length is not None
|
550 |
+
and attention_mask is not None
|
551 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
552 |
+
):
|
553 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
554 |
+
|
555 |
+
position_ids = kwargs.get("position_ids", None)
|
556 |
+
if attention_mask is not None and position_ids is None:
|
557 |
+
# create position_ids on the fly for batch generation
|
558 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
559 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
560 |
+
if past_key_values:
|
561 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
562 |
+
|
563 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
564 |
+
if inputs_embeds is not None and past_key_values is None:
|
565 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
566 |
+
else:
|
567 |
+
model_inputs = {"input_ids": input_ids}
|
568 |
+
|
569 |
+
model_inputs.update(
|
570 |
+
{
|
571 |
+
"position_ids": position_ids,
|
572 |
+
"past_key_values": past_key_values,
|
573 |
+
"use_cache": kwargs.get("use_cache"),
|
574 |
+
"attention_mask": attention_mask,
|
575 |
+
}
|
576 |
+
)
|
577 |
+
return model_inputs
|
578 |
+
|
579 |
+
@staticmethod
|
580 |
+
def _reorder_cache(past_key_values, beam_idx):
|
581 |
+
reordered_past = ()
|
582 |
+
for layer_past in past_key_values:
|
583 |
+
reordered_past += (
|
584 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
585 |
+
)
|
586 |
+
return reordered_past
|
587 |
+
|
588 |
+
|
589 |
+
class MultimodelHunYuanForCausalLM(HunYuanMoEV1ForCausalLM):
|
590 |
+
_tied_weights_keys = ["lm_head.weight"]
|
591 |
+
|
592 |
+
def __init__(self, config: HunYuanConfig):
|
593 |
+
super().__init__(config)
|
594 |
+
|
595 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
596 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
597 |
+
def forward(
|
598 |
+
self,
|
599 |
+
input_ids: torch.LongTensor = None,
|
600 |
+
attention_mask: Optional[torch.Tensor] = None,
|
601 |
+
position_ids: Optional[torch.LongTensor] = None,
|
602 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
603 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
604 |
+
labels: Optional[torch.LongTensor] = None,
|
605 |
+
imgs: Optional[List[torch.FloatTensor]] = None,
|
606 |
+
imgs_pos: Optional[List[int]] = None,
|
607 |
+
use_cache: Optional[bool] = None,
|
608 |
+
output_attentions: Optional[bool] = None,
|
609 |
+
output_hidden_states: Optional[bool] = None,
|
610 |
+
return_dict: Optional[bool] = None,
|
611 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
612 |
+
r"""
|
613 |
+
Args:
|
614 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
615 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
616 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
617 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
618 |
+
|
619 |
+
Returns:
|
620 |
+
|
621 |
+
Example:
|
622 |
+
|
623 |
+
```python
|
624 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
625 |
+
|
626 |
+
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
627 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
628 |
+
|
629 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
630 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
631 |
+
|
632 |
+
>>> # Generate
|
633 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
634 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
635 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
636 |
+
```"""
|
637 |
+
mask_init_id = self.config.mask_init_id
|
638 |
+
pad_id = self.config.pad_token_id
|
639 |
+
eod_id = self.config.eod_token_id
|
640 |
+
image_token_id = self.config.image_token_id
|
641 |
+
im_start_id = self.config.im_start_id
|
642 |
+
im_end_id = self.config.im_end_id
|
643 |
+
video_start_id = self.config.video_start_id
|
644 |
+
video_end_id = self.config.video_end_id
|
645 |
+
|
646 |
+
if self.vit is not None and imgs is not None:
|
647 |
+
encoder_input = self.model.embed_tokens(input_ids)
|
648 |
+
if self.vit_type in ['NaVit', 'EvaVit', 'AnyResVit']:
|
649 |
+
inputs_embeds, input_ids = NaVitForward(input_ids, encoder_input, self.vit, imgs, imgs_pos, self.config.vit_input_resolution, \
|
650 |
+
im_start_id, im_end_id, image_token_id, self.config.anyres_vit_two_views, self.config.torch_dtype)
|
651 |
+
else:
|
652 |
+
inputs_embeds, input_ids = VitForward(input_ids, encoder_input, self.vit, self.vit_linear_encoder, imgs, imgs_pos, \
|
653 |
+
self.config.vit_input_resolution, self.config.vit_mapping_type, self.config.vit_patch, self.config.vit_token)
|
654 |
+
|
655 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
656 |
+
output_hidden_states = (
|
657 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
658 |
+
)
|
659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
660 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
661 |
+
|
662 |
+
outputs = self.model(
|
663 |
+
input_ids=input_ids,
|
664 |
+
attention_mask=attention_mask,
|
665 |
+
position_ids=position_ids,
|
666 |
+
past_key_values=past_key_values,
|
667 |
+
inputs_embeds=inputs_embeds,
|
668 |
+
use_cache=use_cache,
|
669 |
+
output_attentions=output_attentions,
|
670 |
+
output_hidden_states=output_hidden_states,
|
671 |
+
return_dict=return_dict,
|
672 |
+
)
|
673 |
+
|
674 |
+
hidden_states = outputs[0]
|
675 |
+
if self.config.pretraining_tp > 1:
|
676 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
677 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
678 |
+
logits = torch.cat(logits, dim=-1)
|
679 |
+
else:
|
680 |
+
logits = self.lm_head(hidden_states)
|
681 |
+
logits = logits.float()
|
682 |
+
|
683 |
+
loss = None
|
684 |
+
if labels is not None:
|
685 |
+
labels = labels.to(logits.device)
|
686 |
+
# Shift so that tokens < n predict n
|
687 |
+
shift_logits = logits
|
688 |
+
shift_labels = labels
|
689 |
+
# Flatten the tokens
|
690 |
+
loss_fct = CrossEntropyLoss()
|
691 |
+
shift_logits = shift_logits.reshape(-1, self.config.vocab_size)
|
692 |
+
shift_labels = shift_labels.reshape(-1)
|
693 |
+
shift_tokens = input_ids.reshape(-1)
|
694 |
+
# compute loss
|
695 |
+
mask = (shift_labels < mask_init_id) & (shift_labels != pad_id) & (shift_labels != image_token_id) & (shift_labels != im_start_id) \
|
696 |
+
& (shift_labels != im_end_id) & (shift_labels != video_start_id) & (shift_labels != video_end_id) & (shift_tokens != pad_id) & (shift_tokens != eod_id)
|
697 |
+
shift_logits = shift_logits[mask, :]
|
698 |
+
shift_labels = shift_labels[mask]
|
699 |
+
loss = loss_fct(shift_logits, shift_labels)
|
700 |
+
|
701 |
+
if not return_dict:
|
702 |
+
output = (logits,) + outputs[1:]
|
703 |
+
return (loss,) + output if loss is not None else output
|
704 |
+
|
705 |
+
return CausalLMOutputWithPast(
|
706 |
+
loss=loss,
|
707 |
+
logits=logits,
|
708 |
+
past_key_values=outputs.past_key_values,
|
709 |
+
hidden_states=outputs.hidden_states,
|
710 |
+
attentions=outputs.attentions,
|
711 |
+
)
|
712 |
+
|
713 |
+
def prepare_inputs_for_generation(
|
714 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
715 |
+
):
|
716 |
+
imgs = kwargs.pop("imgs", None)
|
717 |
+
imgs_pos = kwargs.pop("imgs_pos", None)
|
718 |
+
inputs = super().prepare_inputs_for_generation(
|
719 |
+
input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs
|
720 |
+
)
|
721 |
+
|
722 |
+
if imgs is not None:
|
723 |
+
inputs['imgs'] = imgs
|
724 |
+
if imgs_pos is not None:
|
725 |
+
inputs['imgs_pos'] = imgs_pos
|
726 |
+
return inputs
|
727 |
+
|
728 |
+
@torch.no_grad()
|
729 |
+
def generate(
|
730 |
+
self,
|
731 |
+
inputs: Optional[torch.Tensor] = None,
|
732 |
+
attention_mask: Optional[torch.Tensor] = None,
|
733 |
+
position_ids: Optional[torch.LongTensor] = None,
|
734 |
+
imgs: Optional[List[torch.FloatTensor]] = None,
|
735 |
+
imgs_pos: Optional[List[int]] = None,
|
736 |
+
**kwargs,
|
737 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
738 |
+
if "inputs_embeds" in kwargs:
|
739 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
740 |
+
|
741 |
+
if self.vit is not None:
|
742 |
+
encoder_input = self.model.embed_tokens(inputs)
|
743 |
+
if self.vit_type in ['NaVit', 'EvaVit', 'AnyResVit']:
|
744 |
+
inputs_embeds, input_ids = NaVitForward(inputs, encoder_input, self.vit, imgs, imgs_pos, self.config.vit_input_resolution, \
|
745 |
+
self.config.im_start_id, self.config.im_end_id, self.config.image_token_id, self.config.anyres_vit_two_views, self.config.torch_dtype)
|
746 |
+
else:
|
747 |
+
inputs_embeds, input_ids = VitForward(inputs, encoder_input, self.vit, self.vit_linear_encoder, imgs, imgs_pos, \
|
748 |
+
self.config.vit_input_resolution, self.config.vit_mapping_type, self.config.vit_patch, self.config.vit_token)
|
749 |
+
|
750 |
+
return super().generate(
|
751 |
+
inputs=input_ids,
|
752 |
+
position_ids=position_ids,
|
753 |
+
attention_mask=attention_mask,
|
754 |
+
inputs_embeds=inputs_embeds,
|
755 |
+
eos_token_id=self.config.eod_token_id,
|
756 |
+
**kwargs
|
757 |
+
)
|
758 |
+
|
759 |
+
|
760 |
+
@add_start_docstrings(
|
761 |
+
"""
|
762 |
+
The HunYuan Model transformer with a sequence classification head on top (linear layer).
|
763 |
+
|
764 |
+
[`HunYuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
765 |
+
(e.g. GPT-2) do.
|
766 |
+
|
767 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
768 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
769 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
770 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
771 |
+
each row of the batch).
|
772 |
+
""",
|
773 |
+
HUNYUAN_START_DOCSTRING,
|
774 |
+
)
|
775 |
+
class HunYuanForSequenceClassification(HunYuanPreTrainedModel):
|
776 |
+
def __init__(self, config):
|
777 |
+
super().__init__(config)
|
778 |
+
self.num_labels = config.num_labels
|
779 |
+
self.model = HunYuanModel(config)
|
780 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
781 |
+
|
782 |
+
# Initialize weights and apply final processing
|
783 |
+
self.post_init()
|
784 |
+
|
785 |
+
def get_input_embeddings(self):
|
786 |
+
return self.model.embed_tokens
|
787 |
+
|
788 |
+
def set_input_embeddings(self, value):
|
789 |
+
self.model.embed_tokens = value
|
790 |
+
|
791 |
+
@add_start_docstrings_to_model_forward(HUNYUAN_INPUTS_DOCSTRING)
|
792 |
+
def forward(
|
793 |
+
self,
|
794 |
+
input_ids: torch.LongTensor = None,
|
795 |
+
attention_mask: Optional[torch.Tensor] = None,
|
796 |
+
position_ids: Optional[torch.LongTensor] = None,
|
797 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
798 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
799 |
+
labels: Optional[torch.LongTensor] = None,
|
800 |
+
use_cache: Optional[bool] = None,
|
801 |
+
output_attentions: Optional[bool] = None,
|
802 |
+
output_hidden_states: Optional[bool] = None,
|
803 |
+
return_dict: Optional[bool] = None,
|
804 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
805 |
+
r"""
|
806 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
807 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
808 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
809 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
810 |
+
"""
|
811 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
812 |
+
|
813 |
+
transformer_outputs = self.model(
|
814 |
+
input_ids,
|
815 |
+
attention_mask=attention_mask,
|
816 |
+
position_ids=position_ids,
|
817 |
+
past_key_values=past_key_values,
|
818 |
+
inputs_embeds=inputs_embeds,
|
819 |
+
use_cache=use_cache,
|
820 |
+
output_attentions=output_attentions,
|
821 |
+
output_hidden_states=output_hidden_states,
|
822 |
+
return_dict=return_dict,
|
823 |
+
)
|
824 |
+
hidden_states = transformer_outputs[0]
|
825 |
+
logits = self.score(hidden_states)
|
826 |
+
|
827 |
+
if input_ids is not None:
|
828 |
+
batch_size = input_ids.shape[0]
|
829 |
+
else:
|
830 |
+
batch_size = inputs_embeds.shape[0]
|
831 |
+
|
832 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
833 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
834 |
+
if self.config.pad_token_id is None:
|
835 |
+
sequence_lengths = -1
|
836 |
+
else:
|
837 |
+
if input_ids is not None:
|
838 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
839 |
+
logits.device
|
840 |
+
)
|
841 |
+
else:
|
842 |
+
sequence_lengths = -1
|
843 |
+
|
844 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
845 |
+
|
846 |
+
loss = None
|
847 |
+
if labels is not None:
|
848 |
+
labels = labels.to(logits.device)
|
849 |
+
if self.config.problem_type is None:
|
850 |
+
if self.num_labels == 1:
|
851 |
+
self.config.problem_type = "regression"
|
852 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
853 |
+
self.config.problem_type = "single_label_classification"
|
854 |
+
else:
|
855 |
+
self.config.problem_type = "multi_label_classification"
|
856 |
+
|
857 |
+
if self.config.problem_type == "regression":
|
858 |
+
loss_fct = MSELoss()
|
859 |
+
if self.num_labels == 1:
|
860 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
861 |
+
else:
|
862 |
+
loss = loss_fct(pooled_logits, labels)
|
863 |
+
elif self.config.problem_type == "single_label_classification":
|
864 |
+
loss_fct = CrossEntropyLoss()
|
865 |
+
loss = loss_fct(pooled_logits.reshape(-1, self.num_labels), labels.reshape(-1))
|
866 |
+
elif self.config.problem_type == "multi_label_classification":
|
867 |
+
loss_fct = BCEWithLogitsLoss()
|
868 |
+
loss = loss_fct(pooled_logits, labels)
|
869 |
+
if not return_dict:
|
870 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
871 |
+
return ((loss,) + output) if loss is not None else output
|
872 |
+
|
873 |
+
return SequenceClassifierOutputWithPast(
|
874 |
+
loss=loss,
|
875 |
+
logits=pooled_logits,
|
876 |
+
past_key_values=transformer_outputs.past_key_values,
|
877 |
+
hidden_states=transformer_outputs.hidden_states,
|
878 |
+
attentions=transformer_outputs.attentions,
|
879 |
+
)
|