Upload 20 files
Browse files- hunyuan3d-paint-v2-0-turbo/.gitattributes +35 -0
- hunyuan3d-paint-v2-0-turbo/README.md +53 -0
- hunyuan3d-paint-v2-0-turbo/feature_extractor/preprocessor_config.json +20 -0
- hunyuan3d-paint-v2-0-turbo/image_encoder/config.json +23 -0
- hunyuan3d-paint-v2-0-turbo/image_encoder/model.safetensors +3 -0
- hunyuan3d-paint-v2-0-turbo/image_encoder/preprocessor_config.json +27 -0
- hunyuan3d-paint-v2-0-turbo/model_index.json +37 -0
- hunyuan3d-paint-v2-0-turbo/scheduler/scheduler_config.json +15 -0
- hunyuan3d-paint-v2-0-turbo/text_encoder/config.json +25 -0
- hunyuan3d-paint-v2-0-turbo/text_encoder/pytorch_model.bin +3 -0
- hunyuan3d-paint-v2-0-turbo/tokenizer/merges.txt +0 -0
- hunyuan3d-paint-v2-0-turbo/tokenizer/special_tokens_map.json +24 -0
- hunyuan3d-paint-v2-0-turbo/tokenizer/tokenizer_config.json +34 -0
- hunyuan3d-paint-v2-0-turbo/tokenizer/vocab.json +0 -0
- hunyuan3d-paint-v2-0-turbo/unet/config.json +45 -0
- hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin +3 -0
- hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.safetensors +3 -0
- hunyuan3d-paint-v2-0-turbo/unet/modules.py +926 -0
- hunyuan3d-paint-v2-0-turbo/vae/config.json +29 -0
- hunyuan3d-paint-v2-0-turbo/vae/diffusion_pytorch_model.bin +3 -0
hunyuan3d-paint-v2-0-turbo/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
hunyuan3d-paint-v2-0-turbo/README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: openrail++
|
3 |
+
tags:
|
4 |
+
- stable-diffusion
|
5 |
+
- text-to-image
|
6 |
+
---
|
7 |
+
|
8 |
+
# SD v2.1-base with Zero Terminal SNR (LAION Aesthetic 6+)
|
9 |
+
|
10 |
+
This model is used in [Diffusion Model with Perceptual Loss](https://arxiv.org/abs/2401.00110) paper as the MSE baseline.
|
11 |
+
|
12 |
+
This model is trained using zero terminal SNR schedule following [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891) paper on LAION aesthetic 6+ data.
|
13 |
+
|
14 |
+
This model is finetuned from [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base).
|
15 |
+
|
16 |
+
This model is meant for research demonstration, not for production use.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
```python
|
21 |
+
from diffusers import StableDiffusionPipeline
|
22 |
+
prompt = "A young girl smiling"
|
23 |
+
pipe = StableDiffusionPipeline.from_pretrained("ByteDance/sd2.1-base-zsnr-laionaes6").to("cuda")
|
24 |
+
pipe(prompt, guidance_scale=7.5, guidance_rescale=0.7).images[0].save("out.jpg")
|
25 |
+
```
|
26 |
+
|
27 |
+
## Related Models
|
28 |
+
|
29 |
+
* [bytedance/sd2.1-base-zsnr-laionaes5](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes5)
|
30 |
+
* [bytedance/sd2.1-base-zsnr-laionaes6](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes6)
|
31 |
+
* [bytedance/sd2.1-base-zsnr-laionaes6-perceptual](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes6-perceptual)
|
32 |
+
|
33 |
+
|
34 |
+
## Cite as
|
35 |
+
```
|
36 |
+
@misc{lin2024diffusion,
|
37 |
+
title={Diffusion Model with Perceptual Loss},
|
38 |
+
author={Shanchuan Lin and Xiao Yang},
|
39 |
+
year={2024},
|
40 |
+
eprint={2401.00110},
|
41 |
+
archivePrefix={arXiv},
|
42 |
+
primaryClass={cs.CV}
|
43 |
+
}
|
44 |
+
|
45 |
+
@misc{lin2023common,
|
46 |
+
title={Common Diffusion Noise Schedules and Sample Steps are Flawed},
|
47 |
+
author={Shanchuan Lin and Bingchen Liu and Jiashi Li and Xiao Yang},
|
48 |
+
year={2023},
|
49 |
+
eprint={2305.08891},
|
50 |
+
archivePrefix={arXiv},
|
51 |
+
primaryClass={cs.CV}
|
52 |
+
}
|
53 |
+
```
|
hunyuan3d-paint-v2-0-turbo/feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 224,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_convert_rgb": true,
|
5 |
+
"do_normalize": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
8 |
+
"image_mean": [
|
9 |
+
0.48145466,
|
10 |
+
0.4578275,
|
11 |
+
0.40821073
|
12 |
+
],
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"resample": 3,
|
19 |
+
"size": 224
|
20 |
+
}
|
hunyuan3d-paint-v2-0-turbo/image_encoder/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "D:\\.cache\\huggingface\\hub\\models--sudo-ai--zero123plus-v1.1\\snapshots\\36df7de980afd15f80b2e1a4e9a920d7020e2654\\vision_encoder",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPVisionModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 1280,
|
10 |
+
"image_size": 224,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5120,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"model_type": "clip_vision_model",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_channels": 3,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"patch_size": 14,
|
20 |
+
"projection_dim": 1024,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.36.0"
|
23 |
+
}
|
hunyuan3d-paint-v2-0-turbo/image_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae616c24393dd1854372b0639e5541666f7521cbe219669255e865cb7f89466a
|
3 |
+
size 1264217240
|
hunyuan3d-paint-v2-0-turbo/image_encoder/preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"shortest_edge": 224
|
26 |
+
}
|
27 |
+
}
|
hunyuan3d-paint-v2-0-turbo/model_index.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.23.1",
|
4 |
+
"feature_extractor": [
|
5 |
+
"transformers",
|
6 |
+
"CLIPImageProcessor"
|
7 |
+
],
|
8 |
+
"requires_safety_checker": false,
|
9 |
+
"safety_checker": [
|
10 |
+
null,
|
11 |
+
null
|
12 |
+
],
|
13 |
+
"scheduler": [
|
14 |
+
"diffusers",
|
15 |
+
"DDIMScheduler"
|
16 |
+
],
|
17 |
+
"text_encoder": [
|
18 |
+
"transformers",
|
19 |
+
"CLIPTextModel"
|
20 |
+
],
|
21 |
+
"tokenizer": [
|
22 |
+
"transformers",
|
23 |
+
"CLIPTokenizer"
|
24 |
+
],
|
25 |
+
"image_encoder": [
|
26 |
+
"transformers",
|
27 |
+
"CLIPVisionModelWithProjection"
|
28 |
+
],
|
29 |
+
"unet": [
|
30 |
+
"modules",
|
31 |
+
"UNet2p5DConditionModel"
|
32 |
+
],
|
33 |
+
"vae": [
|
34 |
+
"diffusers",
|
35 |
+
"AutoencoderKL"
|
36 |
+
]
|
37 |
+
}
|
hunyuan3d-paint-v2-0-turbo/scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.23.1",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "v_prediction",
|
10 |
+
"set_alpha_to_one": true,
|
11 |
+
"steps_offset": 1,
|
12 |
+
"trained_betas": null,
|
13 |
+
"timestep_spacing": "trailing",
|
14 |
+
"rescale_betas_zero_snr": true
|
15 |
+
}
|
hunyuan3d-paint-v2-0-turbo/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "stabilityai/stable-diffusion-2",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 23,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 512,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.25.0.dev0",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
hunyuan3d-paint-v2-0-turbo/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3e254d7b61353497ea0be2c4013df4ea8f739ee88cffa0ba58cd085459ed565
|
3 |
+
size 1361671895
|
hunyuan3d-paint-v2-0-turbo/tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hunyuan3d-paint-v2-0-turbo/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
hunyuan3d-paint-v2-0-turbo/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"do_lower_case": true,
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 77,
|
22 |
+
"name_or_path": "stabilityai/stable-diffusion-2",
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
hunyuan3d-paint-v2-0-turbo/tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hunyuan3d-paint-v2-0-turbo/unet/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.10.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": [
|
6 |
+
5,
|
7 |
+
10,
|
8 |
+
20,
|
9 |
+
20
|
10 |
+
],
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"cross_attention_dim": 1024,
|
19 |
+
"down_block_types": [
|
20 |
+
"CrossAttnDownBlock2D",
|
21 |
+
"CrossAttnDownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
"DownBlock2D"
|
24 |
+
],
|
25 |
+
"downsample_padding": 1,
|
26 |
+
"dual_cross_attention": false,
|
27 |
+
"flip_sin_to_cos": true,
|
28 |
+
"freq_shift": 0,
|
29 |
+
"in_channels": 4,
|
30 |
+
"layers_per_block": 2,
|
31 |
+
"mid_block_scale_factor": 1,
|
32 |
+
"norm_eps": 1e-05,
|
33 |
+
"norm_num_groups": 32,
|
34 |
+
"num_class_embeds": null,
|
35 |
+
"only_cross_attention": false,
|
36 |
+
"out_channels": 4,
|
37 |
+
"sample_size": 64,
|
38 |
+
"up_block_types": [
|
39 |
+
"UpBlock2D",
|
40 |
+
"CrossAttnUpBlock2D",
|
41 |
+
"CrossAttnUpBlock2D",
|
42 |
+
"CrossAttnUpBlock2D"
|
43 |
+
],
|
44 |
+
"use_linear_projection": true
|
45 |
+
}
|
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:690a5fc63c4e263ba07dd41dc95f86f702c059c4361b863e2e21af88d8f75714
|
3 |
+
size 3722674238
|
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6acffa4a22f4da61d87f446bfa83e7ac245481c1535fbf25b200fe4462d0b22
|
3 |
+
size 3722161032
|
hunyuan3d-paint-v2-0-turbo/unet/modules.py
ADDED
@@ -0,0 +1,926 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
+
# and Other Licenses of the Third-Party Components therein:
|
3 |
+
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
+
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
+
|
6 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
+
# The below software and/or models in this distribution may have been
|
8 |
+
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
+
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
+
|
11 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
+
# except for the third-party components listed below.
|
13 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
+
# in the repsective licenses of these third-party components.
|
15 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
+
# components and must ensure that the usage of the third party components adheres to
|
17 |
+
# all relevant laws and regulations.
|
18 |
+
|
19 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
+
# their software and algorithms, including trained model weights, parameters (including
|
21 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
+
|
25 |
+
|
26 |
+
import copy
|
27 |
+
import json
|
28 |
+
import os
|
29 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
30 |
+
|
31 |
+
import torch
|
32 |
+
import torch.nn as nn
|
33 |
+
import torch.nn.functional as F
|
34 |
+
from diffusers.models import UNet2DConditionModel
|
35 |
+
from diffusers.models.attention_processor import Attention
|
36 |
+
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
|
37 |
+
from einops import rearrange
|
38 |
+
|
39 |
+
|
40 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
41 |
+
# "feed_forward_chunk_size" can be used to save memory
|
42 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
43 |
+
raise ValueError(
|
44 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
45 |
+
)
|
46 |
+
|
47 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
48 |
+
ff_output = torch.cat(
|
49 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
50 |
+
dim=chunk_dim,
|
51 |
+
)
|
52 |
+
return ff_output
|
53 |
+
|
54 |
+
class PoseRoPEAttnProcessor2_0:
|
55 |
+
r"""
|
56 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self):
|
60 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
61 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
62 |
+
|
63 |
+
def get_1d_rotary_pos_embed(
|
64 |
+
self,
|
65 |
+
dim: int,
|
66 |
+
pos: torch.Tensor,
|
67 |
+
theta: float = 10000.0,
|
68 |
+
linear_factor=1.0,
|
69 |
+
ntk_factor=1.0,
|
70 |
+
):
|
71 |
+
assert dim % 2 == 0
|
72 |
+
|
73 |
+
theta = theta * ntk_factor
|
74 |
+
freqs = (
|
75 |
+
1.0
|
76 |
+
/ (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim))
|
77 |
+
/ linear_factor
|
78 |
+
) # [D/2]
|
79 |
+
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
|
80 |
+
# flux, hunyuan-dit, cogvideox
|
81 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
82 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
83 |
+
return freqs_cos, freqs_sin
|
84 |
+
|
85 |
+
|
86 |
+
def get_3d_rotary_pos_embed(
|
87 |
+
self,
|
88 |
+
position,
|
89 |
+
embed_dim,
|
90 |
+
voxel_resolution,
|
91 |
+
theta: int = 10000,
|
92 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
93 |
+
"""
|
94 |
+
RoPE for video tokens with 3D structure.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
voxel_resolution (`int`):
|
98 |
+
The grid size of the spatial positional embedding (height, width).
|
99 |
+
theta (`float`):
|
100 |
+
Scaling factor for frequency computation.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
|
104 |
+
"""
|
105 |
+
assert position.shape[-1]==3
|
106 |
+
|
107 |
+
# Compute dimensions for each axis
|
108 |
+
dim_xy = embed_dim // 8 * 3
|
109 |
+
dim_z = embed_dim // 8 * 2
|
110 |
+
|
111 |
+
# Temporal frequencies
|
112 |
+
grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device)
|
113 |
+
freqs_xy = self.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta)
|
114 |
+
freqs_z = self.get_1d_rotary_pos_embed(dim_z, grid, theta=theta)
|
115 |
+
|
116 |
+
xy_cos, xy_sin = freqs_xy # both t_cos and t_sin has shape: voxel_resolution, dim_xy
|
117 |
+
z_cos, z_sin = freqs_z # both w_cos and w_sin has shape: voxel_resolution, dim_z
|
118 |
+
|
119 |
+
embed_flattn = position.view(-1, position.shape[-1])
|
120 |
+
x_cos = xy_cos[embed_flattn[:,0], :]
|
121 |
+
x_sin = xy_sin[embed_flattn[:,0], :]
|
122 |
+
y_cos = xy_cos[embed_flattn[:,1], :]
|
123 |
+
y_sin = xy_sin[embed_flattn[:,1], :]
|
124 |
+
z_cos = z_cos[embed_flattn[:,2], :]
|
125 |
+
z_sin = z_sin[embed_flattn[:,2], :]
|
126 |
+
|
127 |
+
cos = torch.cat((x_cos, y_cos, z_cos), dim=-1)
|
128 |
+
sin = torch.cat((x_sin, y_sin, z_sin), dim=-1)
|
129 |
+
|
130 |
+
cos = cos.view(*position.shape[:-1], embed_dim)
|
131 |
+
sin = sin.view(*position.shape[:-1], embed_dim)
|
132 |
+
return cos, sin
|
133 |
+
|
134 |
+
def apply_rotary_emb(
|
135 |
+
self,
|
136 |
+
x: torch.Tensor,
|
137 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]
|
138 |
+
):
|
139 |
+
cos, sin = freqs_cis # [S, D]
|
140 |
+
cos, sin = cos.to(x.device), sin.to(x.device)
|
141 |
+
cos = cos.unsqueeze(1)
|
142 |
+
sin = sin.unsqueeze(1)
|
143 |
+
|
144 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
145 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
146 |
+
|
147 |
+
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
148 |
+
|
149 |
+
return out
|
150 |
+
|
151 |
+
def __call__(
|
152 |
+
self,
|
153 |
+
attn: Attention,
|
154 |
+
hidden_states: torch.Tensor,
|
155 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
156 |
+
attention_mask: Optional[torch.Tensor] = None,
|
157 |
+
position_indices: Dict = None,
|
158 |
+
temb: Optional[torch.Tensor] = None,
|
159 |
+
*args,
|
160 |
+
**kwargs,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
163 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
164 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
165 |
+
|
166 |
+
residual = hidden_states
|
167 |
+
if attn.spatial_norm is not None:
|
168 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
169 |
+
|
170 |
+
input_ndim = hidden_states.ndim
|
171 |
+
|
172 |
+
if input_ndim == 4:
|
173 |
+
batch_size, channel, height, width = hidden_states.shape
|
174 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
175 |
+
|
176 |
+
batch_size, sequence_length, _ = (
|
177 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
178 |
+
)
|
179 |
+
|
180 |
+
if attention_mask is not None:
|
181 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
182 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
183 |
+
# (batch, heads, source_length, target_length)
|
184 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
185 |
+
|
186 |
+
if attn.group_norm is not None:
|
187 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
188 |
+
|
189 |
+
query = attn.to_q(hidden_states)
|
190 |
+
|
191 |
+
if encoder_hidden_states is None:
|
192 |
+
encoder_hidden_states = hidden_states
|
193 |
+
elif attn.norm_cross:
|
194 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
195 |
+
|
196 |
+
key = attn.to_k(encoder_hidden_states)
|
197 |
+
value = attn.to_v(encoder_hidden_states)
|
198 |
+
|
199 |
+
inner_dim = key.shape[-1]
|
200 |
+
head_dim = inner_dim // attn.heads
|
201 |
+
|
202 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
203 |
+
|
204 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
205 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
206 |
+
|
207 |
+
if attn.norm_q is not None:
|
208 |
+
query = attn.norm_q(query)
|
209 |
+
if attn.norm_k is not None:
|
210 |
+
key = attn.norm_k(key)
|
211 |
+
|
212 |
+
if position_indices is not None:
|
213 |
+
if head_dim in position_indices:
|
214 |
+
image_rotary_emb = position_indices[head_dim]
|
215 |
+
else:
|
216 |
+
image_rotary_emb = self.get_3d_rotary_pos_embed(position_indices['voxel_indices'], head_dim, voxel_resolution=position_indices['voxel_resolution'])
|
217 |
+
position_indices[head_dim] = image_rotary_emb
|
218 |
+
query = self.apply_rotary_emb(query, image_rotary_emb)
|
219 |
+
key = self.apply_rotary_emb(key, image_rotary_emb)
|
220 |
+
|
221 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
222 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
223 |
+
hidden_states = F.scaled_dot_product_attention(
|
224 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
225 |
+
)
|
226 |
+
|
227 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
228 |
+
hidden_states = hidden_states.to(query.dtype)
|
229 |
+
|
230 |
+
# linear proj
|
231 |
+
hidden_states = attn.to_out[0](hidden_states)
|
232 |
+
# dropout
|
233 |
+
hidden_states = attn.to_out[1](hidden_states)
|
234 |
+
|
235 |
+
if input_ndim == 4:
|
236 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
237 |
+
|
238 |
+
if attn.residual_connection:
|
239 |
+
hidden_states = hidden_states + residual
|
240 |
+
|
241 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
242 |
+
|
243 |
+
return hidden_states
|
244 |
+
|
245 |
+
class IPAttnProcessor2_0:
|
246 |
+
r"""
|
247 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
248 |
+
"""
|
249 |
+
|
250 |
+
def __init__(self, scale=0.0):
|
251 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
252 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
253 |
+
|
254 |
+
self.scale = scale
|
255 |
+
|
256 |
+
def __call__(
|
257 |
+
self,
|
258 |
+
attn: Attention,
|
259 |
+
hidden_states: torch.Tensor,
|
260 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
261 |
+
ip_hidden_states: Optional[torch.Tensor] = None,
|
262 |
+
attention_mask: Optional[torch.Tensor] = None,
|
263 |
+
temb: Optional[torch.Tensor] = None,
|
264 |
+
*args,
|
265 |
+
**kwargs,
|
266 |
+
) -> torch.Tensor:
|
267 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
268 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
269 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
270 |
+
|
271 |
+
residual = hidden_states
|
272 |
+
if attn.spatial_norm is not None:
|
273 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
274 |
+
|
275 |
+
input_ndim = hidden_states.ndim
|
276 |
+
|
277 |
+
if input_ndim == 4:
|
278 |
+
batch_size, channel, height, width = hidden_states.shape
|
279 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
280 |
+
|
281 |
+
batch_size, sequence_length, _ = (
|
282 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
283 |
+
)
|
284 |
+
|
285 |
+
if attention_mask is not None:
|
286 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
287 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
288 |
+
# (batch, heads, source_length, target_length)
|
289 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
290 |
+
|
291 |
+
if attn.group_norm is not None:
|
292 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
293 |
+
|
294 |
+
query = attn.to_q(hidden_states)
|
295 |
+
|
296 |
+
if encoder_hidden_states is None:
|
297 |
+
encoder_hidden_states = hidden_states
|
298 |
+
elif attn.norm_cross:
|
299 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
300 |
+
|
301 |
+
key = attn.to_k(encoder_hidden_states)
|
302 |
+
value = attn.to_v(encoder_hidden_states)
|
303 |
+
|
304 |
+
inner_dim = key.shape[-1]
|
305 |
+
head_dim = inner_dim // attn.heads
|
306 |
+
|
307 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
308 |
+
|
309 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
310 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
311 |
+
|
312 |
+
if attn.norm_q is not None:
|
313 |
+
query = attn.norm_q(query)
|
314 |
+
if attn.norm_k is not None:
|
315 |
+
key = attn.norm_k(key)
|
316 |
+
|
317 |
+
|
318 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
319 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
320 |
+
hidden_states = F.scaled_dot_product_attention(
|
321 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
322 |
+
)
|
323 |
+
|
324 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
325 |
+
hidden_states = hidden_states.to(query.dtype)
|
326 |
+
|
327 |
+
# for ip adapter
|
328 |
+
if ip_hidden_states is not None:
|
329 |
+
|
330 |
+
ip_key = attn.to_k_ip(ip_hidden_states)
|
331 |
+
ip_value = attn.to_v_ip(ip_hidden_states)
|
332 |
+
|
333 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
334 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
335 |
+
|
336 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
337 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
338 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
339 |
+
)
|
340 |
+
|
341 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
342 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
343 |
+
|
344 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
345 |
+
|
346 |
+
# linear proj
|
347 |
+
hidden_states = attn.to_out[0](hidden_states)
|
348 |
+
# dropout
|
349 |
+
hidden_states = attn.to_out[1](hidden_states)
|
350 |
+
|
351 |
+
if input_ndim == 4:
|
352 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
353 |
+
|
354 |
+
if attn.residual_connection:
|
355 |
+
hidden_states = hidden_states + residual
|
356 |
+
|
357 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
358 |
+
|
359 |
+
return hidden_states
|
360 |
+
|
361 |
+
|
362 |
+
class Basic2p5DTransformerBlock(torch.nn.Module):
|
363 |
+
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ipa=True, use_ma=True, use_ra=True) -> None:
|
364 |
+
super().__init__()
|
365 |
+
self.transformer = transformer
|
366 |
+
self.layer_name = layer_name
|
367 |
+
self.use_ipa = use_ipa
|
368 |
+
self.use_ma = use_ma
|
369 |
+
self.use_ra = use_ra
|
370 |
+
|
371 |
+
if use_ipa:
|
372 |
+
self.attn2.set_processor(IPAttnProcessor2_0())
|
373 |
+
cross_attention_dim = 1024
|
374 |
+
self.attn2.to_k_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
|
375 |
+
self.attn2.to_v_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
|
376 |
+
|
377 |
+
# multiview attn
|
378 |
+
if self.use_ma:
|
379 |
+
self.attn_multiview = Attention(
|
380 |
+
query_dim=self.dim,
|
381 |
+
heads=self.num_attention_heads,
|
382 |
+
dim_head=self.attention_head_dim,
|
383 |
+
dropout=self.dropout,
|
384 |
+
bias=self.attention_bias,
|
385 |
+
cross_attention_dim=None,
|
386 |
+
upcast_attention=self.attn1.upcast_attention,
|
387 |
+
out_bias=True,
|
388 |
+
processor=PoseRoPEAttnProcessor2_0(),
|
389 |
+
)
|
390 |
+
|
391 |
+
# ref attn
|
392 |
+
if self.use_ra:
|
393 |
+
self.attn_refview = Attention(
|
394 |
+
query_dim=self.dim,
|
395 |
+
heads=self.num_attention_heads,
|
396 |
+
dim_head=self.attention_head_dim,
|
397 |
+
dropout=self.dropout,
|
398 |
+
bias=self.attention_bias,
|
399 |
+
cross_attention_dim=None,
|
400 |
+
upcast_attention=self.attn1.upcast_attention,
|
401 |
+
out_bias=True,
|
402 |
+
)
|
403 |
+
|
404 |
+
self._initialize_attn_weights()
|
405 |
+
|
406 |
+
def _initialize_attn_weights(self):
|
407 |
+
|
408 |
+
if self.use_ma:
|
409 |
+
self.attn_multiview.load_state_dict(self.attn1.state_dict())
|
410 |
+
with torch.no_grad():
|
411 |
+
for layer in self.attn_multiview.to_out:
|
412 |
+
for param in layer.parameters():
|
413 |
+
param.zero_()
|
414 |
+
if self.use_ra:
|
415 |
+
self.attn_refview.load_state_dict(self.attn1.state_dict())
|
416 |
+
with torch.no_grad():
|
417 |
+
for layer in self.attn_refview.to_out:
|
418 |
+
for param in layer.parameters():
|
419 |
+
param.zero_()
|
420 |
+
|
421 |
+
if self.use_ipa:
|
422 |
+
self.attn2.to_k_ip.load_state_dict(self.attn2.to_k.state_dict())
|
423 |
+
self.attn2.to_v_ip.load_state_dict(self.attn2.to_v.state_dict())
|
424 |
+
|
425 |
+
def __getattr__(self, name: str):
|
426 |
+
try:
|
427 |
+
return super().__getattr__(name)
|
428 |
+
except AttributeError:
|
429 |
+
return getattr(self.transformer, name)
|
430 |
+
|
431 |
+
def forward(
|
432 |
+
self,
|
433 |
+
hidden_states: torch.Tensor,
|
434 |
+
attention_mask: Optional[torch.Tensor] = None,
|
435 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
436 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
437 |
+
timestep: Optional[torch.LongTensor] = None,
|
438 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
439 |
+
class_labels: Optional[torch.LongTensor] = None,
|
440 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
441 |
+
) -> torch.Tensor:
|
442 |
+
|
443 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
444 |
+
# 0. Self-Attention
|
445 |
+
batch_size = hidden_states.shape[0]
|
446 |
+
|
447 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
448 |
+
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
|
449 |
+
mode = cross_attention_kwargs.pop('mode', None)
|
450 |
+
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
|
451 |
+
ip_hidden_states = cross_attention_kwargs.pop("ip_hidden_states", None)
|
452 |
+
position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
|
453 |
+
position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
|
454 |
+
|
455 |
+
if self.norm_type == "ada_norm":
|
456 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
457 |
+
elif self.norm_type == "ada_norm_zero":
|
458 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
459 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
460 |
+
)
|
461 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
462 |
+
norm_hidden_states = self.norm1(hidden_states)
|
463 |
+
elif self.norm_type == "ada_norm_continuous":
|
464 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
465 |
+
elif self.norm_type == "ada_norm_single":
|
466 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
467 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
468 |
+
).chunk(6, dim=1)
|
469 |
+
norm_hidden_states = self.norm1(hidden_states)
|
470 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
471 |
+
else:
|
472 |
+
raise ValueError("Incorrect norm used")
|
473 |
+
|
474 |
+
if self.pos_embed is not None:
|
475 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
476 |
+
|
477 |
+
# 1. Prepare GLIGEN inputs
|
478 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
479 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
480 |
+
|
481 |
+
attn_output = self.attn1(
|
482 |
+
norm_hidden_states,
|
483 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
484 |
+
attention_mask=attention_mask,
|
485 |
+
**cross_attention_kwargs,
|
486 |
+
)
|
487 |
+
if self.norm_type == "ada_norm_zero":
|
488 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
489 |
+
elif self.norm_type == "ada_norm_single":
|
490 |
+
attn_output = gate_msa * attn_output
|
491 |
+
|
492 |
+
hidden_states = attn_output + hidden_states
|
493 |
+
if hidden_states.ndim == 4:
|
494 |
+
hidden_states = hidden_states.squeeze(1)
|
495 |
+
|
496 |
+
# 1.2 Reference Attention
|
497 |
+
if 'w' in mode:
|
498 |
+
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C
|
499 |
+
|
500 |
+
if 'r' in mode:
|
501 |
+
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
|
502 |
+
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
|
503 |
+
|
504 |
+
attn_output = self.attn_refview(
|
505 |
+
norm_hidden_states,
|
506 |
+
encoder_hidden_states=condition_embed,
|
507 |
+
attention_mask=None,
|
508 |
+
**cross_attention_kwargs
|
509 |
+
)
|
510 |
+
|
511 |
+
hidden_states = attn_output + hidden_states
|
512 |
+
if hidden_states.ndim == 4:
|
513 |
+
hidden_states = hidden_states.squeeze(1)
|
514 |
+
|
515 |
+
|
516 |
+
# 1.3 Multiview Attention
|
517 |
+
if num_in_batch > 1 and self.use_ma:
|
518 |
+
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
|
519 |
+
position_mask = None
|
520 |
+
if position_attn_mask is not None:
|
521 |
+
if multivew_hidden_states.shape[1] in position_attn_mask:
|
522 |
+
position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
|
523 |
+
position_indices = None
|
524 |
+
if position_voxel_indices is not None:
|
525 |
+
if multivew_hidden_states.shape[1] in position_voxel_indices:
|
526 |
+
position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
|
527 |
+
|
528 |
+
attn_output = self.attn_multiview(
|
529 |
+
multivew_hidden_states,
|
530 |
+
encoder_hidden_states=multivew_hidden_states,
|
531 |
+
attention_mask=position_mask,
|
532 |
+
position_indices=position_indices,
|
533 |
+
**cross_attention_kwargs
|
534 |
+
)
|
535 |
+
|
536 |
+
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
|
537 |
+
|
538 |
+
hidden_states = attn_output + hidden_states
|
539 |
+
if hidden_states.ndim == 4:
|
540 |
+
hidden_states = hidden_states.squeeze(1)
|
541 |
+
|
542 |
+
# 1.2 GLIGEN Control
|
543 |
+
if gligen_kwargs is not None:
|
544 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
545 |
+
|
546 |
+
# 3. Cross-Attention
|
547 |
+
if self.attn2 is not None:
|
548 |
+
if self.norm_type == "ada_norm":
|
549 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
550 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
551 |
+
norm_hidden_states = self.norm2(hidden_states)
|
552 |
+
elif self.norm_type == "ada_norm_single":
|
553 |
+
# For PixArt norm2 isn't applied here:
|
554 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
555 |
+
norm_hidden_states = hidden_states
|
556 |
+
elif self.norm_type == "ada_norm_continuous":
|
557 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
558 |
+
else:
|
559 |
+
raise ValueError("Incorrect norm")
|
560 |
+
|
561 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
562 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
563 |
+
|
564 |
+
if ip_hidden_states is not None:
|
565 |
+
ip_hidden_states = ip_hidden_states.unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
|
566 |
+
ip_hidden_states = rearrange(ip_hidden_states, 'b n l c -> (b n) l c')
|
567 |
+
|
568 |
+
if self.use_ipa:
|
569 |
+
attn_output = self.attn2(
|
570 |
+
norm_hidden_states,
|
571 |
+
encoder_hidden_states=encoder_hidden_states,
|
572 |
+
ip_hidden_states=ip_hidden_states,
|
573 |
+
attention_mask=encoder_attention_mask,
|
574 |
+
**cross_attention_kwargs,
|
575 |
+
)
|
576 |
+
else:
|
577 |
+
attn_output = self.attn2(
|
578 |
+
norm_hidden_states,
|
579 |
+
encoder_hidden_states=encoder_hidden_states,
|
580 |
+
attention_mask=encoder_attention_mask,
|
581 |
+
**cross_attention_kwargs,
|
582 |
+
)
|
583 |
+
|
584 |
+
hidden_states = attn_output + hidden_states
|
585 |
+
|
586 |
+
# 4. Feed-forward
|
587 |
+
# i2vgen doesn't have this norm 🤷♂️
|
588 |
+
if self.norm_type == "ada_norm_continuous":
|
589 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
590 |
+
elif not self.norm_type == "ada_norm_single":
|
591 |
+
norm_hidden_states = self.norm3(hidden_states)
|
592 |
+
|
593 |
+
if self.norm_type == "ada_norm_zero":
|
594 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
595 |
+
|
596 |
+
if self.norm_type == "ada_norm_single":
|
597 |
+
norm_hidden_states = self.norm2(hidden_states)
|
598 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
599 |
+
|
600 |
+
if self._chunk_size is not None:
|
601 |
+
# "feed_forward_chunk_size" can be used to save memory
|
602 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
603 |
+
else:
|
604 |
+
ff_output = self.ff(norm_hidden_states)
|
605 |
+
|
606 |
+
if self.norm_type == "ada_norm_zero":
|
607 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
608 |
+
elif self.norm_type == "ada_norm_single":
|
609 |
+
ff_output = gate_mlp * ff_output
|
610 |
+
|
611 |
+
hidden_states = ff_output + hidden_states
|
612 |
+
if hidden_states.ndim == 4:
|
613 |
+
hidden_states = hidden_states.squeeze(1)
|
614 |
+
|
615 |
+
return hidden_states
|
616 |
+
|
617 |
+
@torch.no_grad()
|
618 |
+
def compute_voxel_grid_mask(position, grid_resolution=8):
|
619 |
+
|
620 |
+
position = position.half()
|
621 |
+
B,N,_,H,W = position.shape
|
622 |
+
assert H%grid_resolution==0 and W%grid_resolution==0
|
623 |
+
|
624 |
+
valid_mask = (position != 1).all(dim=2, keepdim=True)
|
625 |
+
valid_mask = valid_mask.expand_as(position)
|
626 |
+
position[valid_mask==False] = 0
|
627 |
+
|
628 |
+
|
629 |
+
position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
|
630 |
+
valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
|
631 |
+
|
632 |
+
grid_position = position.sum(dim=(-2, -1))
|
633 |
+
count_masked = valid_mask.sum(dim=(-2, -1))
|
634 |
+
|
635 |
+
grid_position = grid_position / count_masked.clamp(min=1)
|
636 |
+
grid_position[count_masked<5] = 0
|
637 |
+
|
638 |
+
grid_position = grid_position.permute(0,1,4,2,3)
|
639 |
+
grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c')
|
640 |
+
|
641 |
+
grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4) # 形状变为 B, N, 1, L, 1, 3
|
642 |
+
grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3) # 形状变为 B, 1, N, 1, L, 3
|
643 |
+
|
644 |
+
# 计算欧氏距离
|
645 |
+
distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1) # 形状为 B, N, N, L, L
|
646 |
+
|
647 |
+
weights = distances
|
648 |
+
grid_distance = 1.73/grid_resolution
|
649 |
+
|
650 |
+
#weights = weights*-32
|
651 |
+
#weights = weights.clamp(min=-10000.0)
|
652 |
+
|
653 |
+
weights = weights< grid_distance
|
654 |
+
|
655 |
+
return weights
|
656 |
+
|
657 |
+
def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]):
|
658 |
+
position_attn_mask = {}
|
659 |
+
with torch.no_grad():
|
660 |
+
for grid_resolution in grid_resolutions:
|
661 |
+
position_mask = compute_voxel_grid_mask(position_maps, grid_resolution)
|
662 |
+
position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)')
|
663 |
+
position_attn_mask[position_mask.shape[1]] = position_mask
|
664 |
+
return position_attn_mask
|
665 |
+
|
666 |
+
@torch.no_grad()
|
667 |
+
def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128):
|
668 |
+
|
669 |
+
position = position.half()
|
670 |
+
B,N,_,H,W = position.shape
|
671 |
+
assert H%grid_resolution==0 and W%grid_resolution==0
|
672 |
+
|
673 |
+
valid_mask = (position != 1).all(dim=2, keepdim=True)
|
674 |
+
valid_mask = valid_mask.expand_as(position)
|
675 |
+
position[valid_mask==False] = 0
|
676 |
+
|
677 |
+
position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
|
678 |
+
valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
|
679 |
+
|
680 |
+
grid_position = position.sum(dim=(-2, -1))
|
681 |
+
count_masked = valid_mask.sum(dim=(-2, -1))
|
682 |
+
|
683 |
+
grid_position = grid_position / count_masked.clamp(min=1)
|
684 |
+
grid_position[count_masked<5] = 0
|
685 |
+
|
686 |
+
grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W
|
687 |
+
voxel_indices = grid_position * (voxel_resolution - 1)
|
688 |
+
voxel_indices = torch.round(voxel_indices).long()
|
689 |
+
return voxel_indices
|
690 |
+
|
691 |
+
def compute_multi_resolution_discrete_voxel_indice(position_maps, grid_resolutions=[64, 32, 16, 8], voxel_resolutions=[512, 256, 128, 64]):
|
692 |
+
voxel_indices = {}
|
693 |
+
with torch.no_grad():
|
694 |
+
for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
|
695 |
+
voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
|
696 |
+
voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
|
697 |
+
voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
|
698 |
+
return voxel_indices
|
699 |
+
|
700 |
+
class ImageProjModel(torch.nn.Module):
|
701 |
+
"""Projection Model"""
|
702 |
+
|
703 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
704 |
+
super().__init__()
|
705 |
+
|
706 |
+
self.generator = None
|
707 |
+
self.cross_attention_dim = cross_attention_dim
|
708 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
709 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
710 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
711 |
+
|
712 |
+
def forward(self, image_embeds):
|
713 |
+
embeds = image_embeds
|
714 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
715 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
716 |
+
)
|
717 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
718 |
+
return clip_extra_context_tokens
|
719 |
+
|
720 |
+
class UNet2p5DConditionModel(torch.nn.Module):
|
721 |
+
def __init__(self, unet: UNet2DConditionModel) -> None:
|
722 |
+
super().__init__()
|
723 |
+
self.unet = unet
|
724 |
+
self.unet_dual = copy.deepcopy(unet)
|
725 |
+
|
726 |
+
self.init_camera_embedding()
|
727 |
+
self.init_attention(self.unet, use_ipa=True, use_ma=True, use_ra=True)
|
728 |
+
self.init_attention(self.unet_dual, use_ipa=False, use_ma=False, use_ra=False)
|
729 |
+
self.init_condition()
|
730 |
+
|
731 |
+
@staticmethod
|
732 |
+
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
733 |
+
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
|
734 |
+
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
|
735 |
+
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
|
736 |
+
with open(config_path, 'r', encoding='utf-8') as file:
|
737 |
+
config = json.load(file)
|
738 |
+
unet = UNet2DConditionModel(**config)
|
739 |
+
unet = UNet2p5DConditionModel(unet)
|
740 |
+
|
741 |
+
unet.unet.conv_in = torch.nn.Conv2d(
|
742 |
+
12,
|
743 |
+
unet.unet.conv_in.out_channels,
|
744 |
+
kernel_size=unet.unet.conv_in.kernel_size,
|
745 |
+
stride=unet.unet.conv_in.stride,
|
746 |
+
padding=unet.unet.conv_in.padding,
|
747 |
+
dilation=unet.unet.conv_in.dilation,
|
748 |
+
groups=unet.unet.conv_in.groups,
|
749 |
+
bias=unet.unet.conv_in.bias is not None)
|
750 |
+
|
751 |
+
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
|
752 |
+
unet.load_state_dict(unet_ckpt, strict=True)
|
753 |
+
unet = unet.to(torch_dtype)
|
754 |
+
return unet
|
755 |
+
|
756 |
+
def init_condition(self):
|
757 |
+
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
|
758 |
+
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))
|
759 |
+
|
760 |
+
self.unet.image_proj_model = ImageProjModel(
|
761 |
+
cross_attention_dim=self.unet.config.cross_attention_dim,
|
762 |
+
clip_embeddings_dim=1024,
|
763 |
+
)
|
764 |
+
|
765 |
+
|
766 |
+
def init_camera_embedding(self):
|
767 |
+
self.max_num_ref_image = 5
|
768 |
+
self.max_num_gen_image = 12*3+4*2
|
769 |
+
|
770 |
+
time_embed_dim = 1280
|
771 |
+
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim)
|
772 |
+
# 将嵌入层的权重初始化为全零
|
773 |
+
nn.init.zeros_(self.unet.class_embedding.weight)
|
774 |
+
|
775 |
+
def init_attention(self, unet, use_ipa=True, use_ma=True, use_ra=True):
|
776 |
+
|
777 |
+
for down_block_i, down_block in enumerate(unet.down_blocks):
|
778 |
+
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
779 |
+
for attn_i, attn in enumerate(down_block.attentions):
|
780 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
781 |
+
if isinstance(transformer, BasicTransformerBlock):
|
782 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
|
783 |
+
|
784 |
+
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
|
785 |
+
for attn_i, attn in enumerate(unet.mid_block.attentions):
|
786 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
787 |
+
if isinstance(transformer, BasicTransformerBlock):
|
788 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
|
789 |
+
|
790 |
+
for up_block_i, up_block in enumerate(unet.up_blocks):
|
791 |
+
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
|
792 |
+
for attn_i, attn in enumerate(up_block.attentions):
|
793 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
794 |
+
if isinstance(transformer, BasicTransformerBlock):
|
795 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
|
796 |
+
|
797 |
+
|
798 |
+
def __getattr__(self, name: str):
|
799 |
+
try:
|
800 |
+
return super().__getattr__(name)
|
801 |
+
except AttributeError:
|
802 |
+
return getattr(self.unet, name)
|
803 |
+
|
804 |
+
def forward(
|
805 |
+
self, sample, timestep, encoder_hidden_states, class_labels=None,
|
806 |
+
*args, cross_attention_kwargs=None, down_intrablock_additional_residuals=None,
|
807 |
+
down_block_res_samples=None, mid_block_res_sample=None,
|
808 |
+
**cached_condition,
|
809 |
+
):
|
810 |
+
B, N_gen, _, H, W = sample.shape
|
811 |
+
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
|
812 |
+
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
|
813 |
+
sample = [sample]
|
814 |
+
|
815 |
+
if 'normal_imgs' in cached_condition:
|
816 |
+
sample.append(cached_condition["normal_imgs"])
|
817 |
+
if 'position_imgs' in cached_condition:
|
818 |
+
sample.append(cached_condition["position_imgs"])
|
819 |
+
|
820 |
+
sample = torch.cat(sample, dim=2)
|
821 |
+
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
|
822 |
+
|
823 |
+
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
|
824 |
+
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
|
825 |
+
|
826 |
+
|
827 |
+
use_position_mask = False
|
828 |
+
use_position_rope = True
|
829 |
+
|
830 |
+
position_attn_mask = None
|
831 |
+
if use_position_mask:
|
832 |
+
if 'position_attn_mask' in cached_condition:
|
833 |
+
position_attn_mask = cached_condition['position_attn_mask']
|
834 |
+
else:
|
835 |
+
if 'position_maps' in cached_condition:
|
836 |
+
position_attn_mask = compute_multi_resolution_mask(cached_condition['position_maps'])
|
837 |
+
|
838 |
+
position_voxel_indices = None
|
839 |
+
if use_position_rope:
|
840 |
+
if 'position_voxel_indices' in cached_condition:
|
841 |
+
position_voxel_indices = cached_condition['position_voxel_indices']
|
842 |
+
else:
|
843 |
+
if 'position_maps' in cached_condition:
|
844 |
+
position_voxel_indices = compute_multi_resolution_discrete_voxel_indice(cached_condition['position_maps'])
|
845 |
+
|
846 |
+
if 'ip_hidden_states' in cached_condition:
|
847 |
+
ip_hidden_states = cached_condition['ip_hidden_states']
|
848 |
+
else:
|
849 |
+
if 'clip_embeds' in cached_condition:
|
850 |
+
ip_hidden_states = self.image_proj_model(cached_condition['clip_embeds'])
|
851 |
+
else:
|
852 |
+
ip_hidden_states = None
|
853 |
+
cached_condition['ip_hidden_states'] = ip_hidden_states
|
854 |
+
|
855 |
+
if 'condition_embed_dict' in cached_condition:
|
856 |
+
condition_embed_dict = cached_condition['condition_embed_dict']
|
857 |
+
else:
|
858 |
+
condition_embed_dict = {}
|
859 |
+
ref_latents = cached_condition['ref_latents']
|
860 |
+
N_ref = ref_latents.shape[1]
|
861 |
+
camera_info_ref = cached_condition['camera_info_ref']
|
862 |
+
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
|
863 |
+
|
864 |
+
#ref_latents = [ref_latents]
|
865 |
+
#if 'normal_imgs' in cached_condition:
|
866 |
+
# ref_latents.append(torch.zeros_like(ref_latents[0]))
|
867 |
+
#if 'position_imgs' in cached_condition:
|
868 |
+
# ref_latents.append(torch.zeros_like(ref_latents[0]))
|
869 |
+
#ref_latents = torch.cat(ref_latents, dim=2)
|
870 |
+
|
871 |
+
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
|
872 |
+
|
873 |
+
encoder_hidden_states_ref = self.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
|
874 |
+
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
|
875 |
+
|
876 |
+
noisy_ref_latents = ref_latents
|
877 |
+
timestep_ref = 0
|
878 |
+
'''
|
879 |
+
if timestep.dim()>0:
|
880 |
+
timestep_ref = rearrange(timestep, '(b n) -> b n', b=B)[:,:1].repeat(1, N_ref)
|
881 |
+
timestep_ref = rearrange(timestep_ref, 'b n -> (b n)')
|
882 |
+
else:
|
883 |
+
timestep_ref = timestep
|
884 |
+
noise = torch.randn_like(noisy_ref_latents[:,:4,...])
|
885 |
+
if self.training:
|
886 |
+
noisy_ref_latents[:,:4,...] = self.train_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref)
|
887 |
+
noisy_ref_latents[:,:4,...] = self.train_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref)
|
888 |
+
else:
|
889 |
+
noisy_ref_latents[:,:4,...] = self.val_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref.reshape(-1))
|
890 |
+
noisy_ref_latents[:,:4,...] = self.val_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref.reshape(-1))
|
891 |
+
'''
|
892 |
+
self.unet_dual(
|
893 |
+
noisy_ref_latents, timestep_ref,
|
894 |
+
encoder_hidden_states=encoder_hidden_states_ref,
|
895 |
+
#class_labels=camera_info_ref,
|
896 |
+
# **kwargs
|
897 |
+
return_dict=False,
|
898 |
+
cross_attention_kwargs={
|
899 |
+
'mode':'w', 'num_in_batch':N_ref,
|
900 |
+
'condition_embed_dict':condition_embed_dict},
|
901 |
+
)
|
902 |
+
cached_condition['condition_embed_dict'] = condition_embed_dict
|
903 |
+
|
904 |
+
return self.unet(
|
905 |
+
sample, timestep,
|
906 |
+
encoder_hidden_states_gen, *args,
|
907 |
+
class_labels=camera_info_gen,
|
908 |
+
down_intrablock_additional_residuals=[
|
909 |
+
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
|
910 |
+
] if down_intrablock_additional_residuals is not None else None,
|
911 |
+
down_block_additional_residuals=[
|
912 |
+
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
|
913 |
+
] if down_block_res_samples is not None else None,
|
914 |
+
mid_block_additional_residual=(
|
915 |
+
mid_block_res_sample.to(dtype=self.unet.dtype)
|
916 |
+
if mid_block_res_sample is not None else None
|
917 |
+
),
|
918 |
+
return_dict=False,
|
919 |
+
cross_attention_kwargs={
|
920 |
+
'mode':'r', 'num_in_batch':N_gen,
|
921 |
+
'ip_hidden_states':ip_hidden_states,
|
922 |
+
'condition_embed_dict':condition_embed_dict,
|
923 |
+
'position_attn_mask':position_attn_mask,
|
924 |
+
'position_voxel_indices':position_voxel_indices
|
925 |
+
},
|
926 |
+
)
|
hunyuan3d-paint-v2-0-turbo/vae/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.10.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"in_channels": 3,
|
18 |
+
"latent_channels": 4,
|
19 |
+
"layers_per_block": 2,
|
20 |
+
"norm_num_groups": 32,
|
21 |
+
"out_channels": 3,
|
22 |
+
"sample_size": 768,
|
23 |
+
"up_block_types": [
|
24 |
+
"UpDecoderBlock2D",
|
25 |
+
"UpDecoderBlock2D",
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D"
|
28 |
+
]
|
29 |
+
}
|
hunyuan3d-paint-v2-0-turbo/vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b4889b6b1d4ce7ae320a02dedaeff1780ad77d415ea0d744b476155c6377ddc
|
3 |
+
size 334707217
|