xueyao commited on
Commit
95acde7
·
2 Parent(s): dae222d d2856fb

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -10,9 +10,10 @@ pipeline_tag: text-to-image
10
  ---
11
 
12
  <div align="center">
 
13
  **TensorArt Stable Diffusion 3.5 Medium ControlNet Depth**
14
 
15
- # <img src="./assets/showcase.png"/>
16
  </div>
17
 
18
  # With SD3.5M
@@ -24,7 +25,7 @@ from diffusers.utils import load_image
24
 
25
  controlnet = SD3ControlNetModel.from_pretrained("tensorart/SD3.5M-Controlnet-Depth")
26
  pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
27
- "stabilityai/stable-diffusion-3-medium",
28
  controlnet=controlnet
29
  )
30
  pipe.to("cuda", torch.float16)
@@ -43,6 +44,7 @@ image = pipe(
43
  image.save('image.jpg')
44
  ```
45
 
 
46
  # With TensorArt's SD3.5M Turbo
47
  ```python
48
  import torch
@@ -52,7 +54,7 @@ from diffusers.utils import load_image
52
 
53
  controlnet = SD3ControlNetModel.from_pretrained("tensorart/SD3.5M-Controlnet-Depth")
54
  pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
55
- "stabilityai/stable-diffusion-3-medium",
56
  controlnet=controlnet
57
  )
58
  pipe.to("cuda", torch.float16)
 
10
  ---
11
 
12
  <div align="center">
13
+
14
  **TensorArt Stable Diffusion 3.5 Medium ControlNet Depth**
15
 
16
+ <img src="./assets/showcase.png"/>
17
  </div>
18
 
19
  # With SD3.5M
 
25
 
26
  controlnet = SD3ControlNetModel.from_pretrained("tensorart/SD3.5M-Controlnet-Depth")
27
  pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
28
+ "stabilityai/stable-diffusion-3.5-medium",
29
  controlnet=controlnet
30
  )
31
  pipe.to("cuda", torch.float16)
 
44
  image.save('image.jpg')
45
  ```
46
 
47
+
48
  # With TensorArt's SD3.5M Turbo
49
  ```python
50
  import torch
 
54
 
55
  controlnet = SD3ControlNetModel.from_pretrained("tensorart/SD3.5M-Controlnet-Depth")
56
  pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
57
+ "tensorart/stable-diffusion-3.5-medium-turbo",
58
  controlnet=controlnet
59
  )
60
  pipe.to("cuda", torch.float16)