--- license: apache-2.0 library_name: transformers datasets: - vicgalle/configurable-system-prompt-multitask tags: - TensorBlock - GGUF base_model: vicgalle/ConfigurableBeagle-11B model-index: - name: ConfigurableBeagle-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.85 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.13 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.91 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 58.34 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.39 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 3.7 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.94 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 7.38 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 26.38 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## vicgalle/ConfigurableBeagle-11B - GGUF This repo contains GGUF format model files for [vicgalle/ConfigurableBeagle-11B](https://huggingface.co/vicgalle/ConfigurableBeagle-11B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ConfigurableBeagle-11B-Q2_K.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q2_K.gguf) | Q2_K | 3.728 GB | smallest, significant quality loss - not recommended for most purposes | | [ConfigurableBeagle-11B-Q3_K_S.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q3_K_S.gguf) | Q3_K_S | 4.344 GB | very small, high quality loss | | [ConfigurableBeagle-11B-Q3_K_M.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q3_K_M.gguf) | Q3_K_M | 4.839 GB | very small, high quality loss | | [ConfigurableBeagle-11B-Q3_K_L.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q3_K_L.gguf) | Q3_K_L | 5.263 GB | small, substantial quality loss | | [ConfigurableBeagle-11B-Q4_0.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q4_0.gguf) | Q4_0 | 5.655 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ConfigurableBeagle-11B-Q4_K_S.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q4_K_S.gguf) | Q4_K_S | 5.698 GB | small, greater quality loss | | [ConfigurableBeagle-11B-Q4_K_M.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q4_K_M.gguf) | Q4_K_M | 6.018 GB | medium, balanced quality - recommended | | [ConfigurableBeagle-11B-Q5_0.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q5_0.gguf) | Q5_0 | 6.889 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ConfigurableBeagle-11B-Q5_K_S.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q5_K_S.gguf) | Q5_K_S | 6.889 GB | large, low quality loss - recommended | | [ConfigurableBeagle-11B-Q5_K_M.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q5_K_M.gguf) | Q5_K_M | 7.076 GB | large, very low quality loss - recommended | | [ConfigurableBeagle-11B-Q6_K.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q6_K.gguf) | Q6_K | 8.200 GB | very large, extremely low quality loss | | [ConfigurableBeagle-11B-Q8_0.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q8_0.gguf) | Q8_0 | 10.621 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ConfigurableBeagle-11B-GGUF --include "ConfigurableBeagle-11B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ConfigurableBeagle-11B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```