---
license: apache-2.0
library_name: transformers
tags:
- TensorBlock
- GGUF
base_model: recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
model-index:
- name: Gemma-2-Ataraxy-Gemmasutra-9B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 76.49
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 42.25
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.74
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.74
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.39
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.63
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
name: Open LLM Leaderboard
---
## recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp - GGUF
This repo contains GGUF format model files for [recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp](https://huggingface.co/recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
user
{prompt}
model
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q2_K.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q2_K.gguf) | Q2_K | 3.805 GB | smallest, significant quality loss - not recommended for most purposes |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_S.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_S.gguf) | Q3_K_S | 4.338 GB | very small, high quality loss |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_M.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_M.gguf) | Q3_K_M | 4.762 GB | very small, high quality loss |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_L.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_L.gguf) | Q3_K_L | 5.132 GB | small, substantial quality loss |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_0.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_0.gguf) | Q4_0 | 5.443 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_K_S.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_K_S.gguf) | Q4_K_S | 5.479 GB | small, greater quality loss |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_K_M.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_K_M.gguf) | Q4_K_M | 5.761 GB | medium, balanced quality - recommended |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_0.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_0.gguf) | Q5_0 | 6.484 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_K_S.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_K_S.gguf) | Q5_K_S | 6.484 GB | large, low quality loss - recommended |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_K_M.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_K_M.gguf) | Q5_K_M | 6.647 GB | large, very low quality loss - recommended |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q6_K.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q6_K.gguf) | Q6_K | 7.589 GB | very large, extremely low quality loss |
| [Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q8_0.gguf](https://huggingface.co/tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF/blob/main/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q8_0.gguf) | Q8_0 | 9.827 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF --include "Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```