--- language: - pt license: apache-2.0 library_name: transformers tags: - text-generation-inference - TensorBlock - GGUF datasets: - TucanoBR/GigaVerbo metrics: - perplexity pipeline_tag: text-generation widget: - text: A floresta da Amazônia é conhecida por sua example_title: Exemplo - text: Uma das coisas que Portugal, Angola, Brasil e Moçambique tem em comum é o example_title: Exemplo - text: O Carnaval do Rio de Janeiro é example_title: Exemplo inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 20 top_p: 0.2 max_new_tokens: 150 co2_eq_emissions: emissions: 960000 source: CodeCarbon training_type: pre-training geographical_location: Germany hardware_used: NVIDIA A100-SXM4-80GB base_model: TucanoBR/Tucano-1b1 model-index: - name: Tucano-1b1 results: - task: type: text-generation name: Text Generation dataset: name: CALAME-PT type: NOVA-vision-language/calame-pt split: all args: num_few_shot: 0 metrics: - type: acc value: 58.24 name: accuracy source: url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt name: Context-Aware LAnguage Modeling Evaluation for Portuguese - task: type: text-generation name: Text Generation dataset: name: LAMBADA-PT type: TucanoBR/lambada-pt split: train args: num_few_shot: 0 metrics: - type: acc value: 34.7 name: accuracy source: url: https://huggingface.co/datasets/TucanoBR/lambada-pt name: LAMBADA-PT - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 21.41 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 23.37 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 25.97 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 60.82 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 10 metrics: - type: pearson value: 24.63 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 43.97 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 29.0 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 41.19 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia-temp/tweetsentbr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 32.18 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: ARC-Challenge (PT) type: arc_pt args: num_few_shot: 25 metrics: - type: acc_norm value: 30.43 name: normalized accuracy source: url: https://github.com/nlp-uoregon/mlmm-evaluation name: Evaluation Framework for Multilingual Large Language Models - task: type: text-generation name: Text Generation dataset: name: HellaSwag (PT) type: hellaswag_pt args: num_few_shot: 10 metrics: - type: acc_norm value: 42.84 name: normalized accuracy source: url: https://github.com/nlp-uoregon/mlmm-evaluation name: Evaluation Framework for Multilingual Large Language Models - task: type: text-generation name: Text Generation dataset: name: TruthfulQA type: truthfulqa_pt args: num_few_shot: 0 metrics: - type: mc2 value: 41.59 name: bleurt source: url: https://github.com/nlp-uoregon/mlmm-evaluation name: Evaluation Framework for Multilingual Large Language Models ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## TucanoBR/Tucano-1b1 - GGUF This repo contains GGUF format model files for [TucanoBR/Tucano-1b1](https://huggingface.co/TucanoBR/Tucano-1b1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Tucano-1b1-Q2_K.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes | | [Tucano-1b1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss | | [Tucano-1b1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss | | [Tucano-1b1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [Tucano-1b1-Q4_0.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Tucano-1b1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss | | [Tucano-1b1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended | | [Tucano-1b1-Q5_0.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Tucano-1b1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended | | [Tucano-1b1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended | | [Tucano-1b1-Q6_K.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss | | [Tucano-1b1-Q8_0.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Tucano-1b1-GGUF --include "Tucano-1b1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Tucano-1b1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```